A Methodology for Precision Nitrogen Fertilization in High-Input Farming Systems

A Methodology for Precision Nitrogen Fertilization in High-Input Farming Systems Nitrogen (N) emissions to ground and surface waters have become a major concern in many regions. In reaction, policy makers are tightening environmental constraints on agriculture, resulting in a call for more efficient management systems. This study presents a methodology for precision N fertilization in high-input farming systems applying split fertilizer strategies. Essentially, the method uses a mechanistic simulation model to quantify (i) soil mineral-N levels and (ii) N uptake rates on a real-time basis. Early warning signals are generated once N concentrations drop below a critical threshold level, indicating that additional fertilizer should be applied. Thresholds are not static, but defined in relation to actual uptake rates. Spatial variation is incorporated through the concept of management units: i.e., stable units with relatively homogeneous characteristics in terms of water regimes and nutrient dynamics. Separate simulations are conducted for each management unit, based on selected representative soil profiles. The proposed methodology was tested in a winter wheat (Triticum aestivum L.) field during the 1998 growing season. Six experimental strips were delineated receiving either ‘precise’ or traditional fertilization. Precision fertilization proved efficient in reducing fertilizer inputs (−23%), while slightly improving grain yields (+3%) and hectoliter weights (+4%). Results clearly illustrate the significance of precision management in the process of increasing fertilizer use efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A Methodology for Precision Nitrogen Fertilization in High-Input Farming Systems

Loading next page...
Kluwer Academic Publishers
Copyright © 2000 by Kluwer Academic Publishers
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial