A method to provide statistical measures of large-scale instantaneous particle clusters from planar images

A method to provide statistical measures of large-scale instantaneous particle clusters from... Particle clusters are preferential accumulations of a solid, secondary phase that can be caused by turbulence. It is well known that particle clusters can influence the performance of systems employing suspension flows, such as pulverised fuel combustion systems. However, statistical analysis of clusters is limited by available methods to quantify them. In the current study, a method to identify planar slices of large-scale particle clusters from planar images of instantaneous particle distributions is presented. The method employs smoothing of instantaneous particle scatter images by a length scale, L S , to produce pseudo-scalar fields of particle distributions. The scalar fields are compared with mean (not smoothed) images to produce cluster masks that are then multiplied by the original instantaneous image to produce a map of the locations of cluster slices. The sensitivity to the smoothing length scale is assessed parametrically for its influence on the statistical measures of the following parameters characterising slices of large-scale clusters in four representative flows: the physical locations of the cluster slice centroids; the area of the cluster slice; and the number of cluster slices per image. While the results are influenced by the selected value of smoothing length scale, L S , the sensitivity is low in a physically reasonable range and the method performs well in this range for the four different flow cases. The method could be extended to provide volumetric measurements with suitable volumetric imaging systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A method to provide statistical measures of large-scale instantaneous particle clusters from planar images

Loading next page...
Copyright © 2011 by Springer-Verlag
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial