A method for the optimum selection of datacenters in geographically distributed clouds

A method for the optimum selection of datacenters in geographically distributed clouds The optimal selection of a datacenter is one of the most important challenges in the structure of a network for the wide distribution of resources in the environment of a geographically distributed cloud. This is due to the variety of datacenters with different quality-of-service (QoS) attributes. The user’s requests and the conditions of the service-level agreements (SLAs) should be considered in the selection of datacenters. In terms of the frequency of datacenters and the range of QoS attributes, the selection of the optimal datacenter is an NP-hard problem. A method is therefore required that can suggest the best datacenter, based on the user’s request and SLAs. Various attributes are considered in the SLA; in the current research, the focus is on the four important attributes of cost, response time, availability, and reliability. In a geo-distributed cloud environment, the nearest datacenter should be suggested after receiving the user’s request, and according to its conditions, SLA violations can be minimized. In the approach proposed here, datacenters are clustered according to these four important attributes, so that the user can access these quickly based on specific need. In addition, in this method, cost and response time are taken as negative criteria, while accessibility and reliability are taken as positive, and the multi-objective NSGA-II algorithm is used for the selection of the optimal datacenter according to these positive and negative attributes. In this paper, the proposed method, known as NSGAII_Cluster, is implemented with the Random, Greedy and MOPSO algorithms; the extent of SLA violation of each of the above-mentioned attributes are compared using four methods. The simulation results indicate that compared to the Random, Greedy and MOPSO methods, the proposed approach has fewer SLA violations in terms of the cost, response time, availability, and reliability of the selected datacenters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Supercomputing Springer Journals

A method for the optimum selection of datacenters in geographically distributed clouds

Loading next page...
 
/lp/springer_journal/a-method-for-the-optimum-selection-of-datacenters-in-geographically-5SSj0OoUIh
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Programming Languages, Compilers, Interpreters; Processor Architectures; Computer Science, general
ISSN
0920-8542
eISSN
1573-0484
D.O.I.
10.1007/s11227-017-1999-5
Publisher site
See Article on Publisher Site

Abstract

The optimal selection of a datacenter is one of the most important challenges in the structure of a network for the wide distribution of resources in the environment of a geographically distributed cloud. This is due to the variety of datacenters with different quality-of-service (QoS) attributes. The user’s requests and the conditions of the service-level agreements (SLAs) should be considered in the selection of datacenters. In terms of the frequency of datacenters and the range of QoS attributes, the selection of the optimal datacenter is an NP-hard problem. A method is therefore required that can suggest the best datacenter, based on the user’s request and SLAs. Various attributes are considered in the SLA; in the current research, the focus is on the four important attributes of cost, response time, availability, and reliability. In a geo-distributed cloud environment, the nearest datacenter should be suggested after receiving the user’s request, and according to its conditions, SLA violations can be minimized. In the approach proposed here, datacenters are clustered according to these four important attributes, so that the user can access these quickly based on specific need. In addition, in this method, cost and response time are taken as negative criteria, while accessibility and reliability are taken as positive, and the multi-objective NSGA-II algorithm is used for the selection of the optimal datacenter according to these positive and negative attributes. In this paper, the proposed method, known as NSGAII_Cluster, is implemented with the Random, Greedy and MOPSO algorithms; the extent of SLA violation of each of the above-mentioned attributes are compared using four methods. The simulation results indicate that compared to the Random, Greedy and MOPSO methods, the proposed approach has fewer SLA violations in terms of the cost, response time, availability, and reliability of the selected datacenters.

Journal

The Journal of SupercomputingSpringer Journals

Published: Mar 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off