A method for separating shock wave motion and turbulence in LDV measurements

A method for separating shock wave motion and turbulence in LDV measurements  Two-component laser Doppler velocimetry (LDV) measurements were made in a planar, two-dimensional flow containing an unsteady oblique shock wave formed by the convergence of two supersonic streams past a thick plate. High-speed wall pressure measurements locate the shock wave and, consequently, allow separation of the effects of shock wave motion from the turbulence fluctuations in the LDV measurements of the shock-separated free shear layer. In the current flow isolating the large-scale changes in the position of the shock from the turbulence primarily reduces the experimental scatter rather than significantly changing the shapes or magnitudes of the turbulent stress profiles. Changes in the direction of shock motion do not significantly affect the mean velocity, but do affect the turbulent stresses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A method for separating shock wave motion and turbulence in LDV measurements

Loading next page...
 
/lp/springer_journal/a-method-for-separating-shock-wave-motion-and-turbulence-in-ldv-MwGWkvkSdb
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050299
Publisher site
See Article on Publisher Site

Abstract

 Two-component laser Doppler velocimetry (LDV) measurements were made in a planar, two-dimensional flow containing an unsteady oblique shock wave formed by the convergence of two supersonic streams past a thick plate. High-speed wall pressure measurements locate the shock wave and, consequently, allow separation of the effects of shock wave motion from the turbulence fluctuations in the LDV measurements of the shock-separated free shear layer. In the current flow isolating the large-scale changes in the position of the shock from the turbulence primarily reduces the experimental scatter rather than significantly changing the shapes or magnitudes of the turbulent stress profiles. Changes in the direction of shock motion do not significantly affect the mean velocity, but do affect the turbulent stresses.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 5, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off