Access the full text.
Sign up today, get DeepDyve free for 14 days.
Rapid assessment of the distribution of earthquake-triggered landslides is an important component of effective disaster mitigation. The effort should be based on both seismic landslide susceptibility and the ground shaking intensity, which is usually measured by peak ground acceleration (PGA). In this paper, we address this issue by analyzing data from the Mw6.1 2014 Ludian, China earthquake. The Newmark method of rigid-block modeling was applied to calculate the critical acceleration of slopes in the study area, which serve as measurement of slope stability under seismic load. The assessment of earthquake-triggered landslide hazard was conducted by comparing these critical accelerations with the distribution of known PGA values. The study area was classified into zones of five levels of landslide hazard: high, moderate high, moderate, light, and very light. Comparison shows that the resulting landslide hazard zones agree with the actual distribution of earthquake-triggered landslides. Nearly 70% of landslides are located in areas of high and moderately high hazard, which occupy only 17% of the study region. This paper demonstrates that using PGA, combined with the analysis of seismic landslide susceptibility, allows a reliable assessment of earthquake-triggered landslides hazards. This easy-operation mapping method is expected to be helpful in emergency preparedness planning, as well as in seismic landslide hazard zoning.
Bulletin of Engineering Geology and the Environment – Springer Journals
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.