Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A method for quick assessment of earthquake-triggered landslide hazards: a case study of the Mw6.1 2014 Ludian, China earthquake

A method for quick assessment of earthquake-triggered landslide hazards: a case study of the... Rapid assessment of the distribution of earthquake-triggered landslides is an important component of effective disaster mitigation. The effort should be based on both seismic landslide susceptibility and the ground shaking intensity, which is usually measured by peak ground acceleration (PGA). In this paper, we address this issue by analyzing data from the Mw6.1 2014 Ludian, China earthquake. The Newmark method of rigid-block modeling was applied to calculate the critical acceleration of slopes in the study area, which serve as measurement of slope stability under seismic load. The assessment of earthquake-triggered landslide hazard was conducted by comparing these critical accelerations with the distribution of known PGA values. The study area was classified into zones of five levels of landslide hazard: high, moderate high, moderate, light, and very light. Comparison shows that the resulting landslide hazard zones agree with the actual distribution of earthquake-triggered landslides. Nearly 70% of landslides are located in areas of high and moderately high hazard, which occupy only 17% of the study region. This paper demonstrates that using PGA, combined with the analysis of seismic landslide susceptibility, allows a reliable assessment of earthquake-triggered landslides hazards. This easy-operation mapping method is expected to be helpful in emergency preparedness planning, as well as in seismic landslide hazard zoning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Engineering Geology and the Environment Springer Journals

A method for quick assessment of earthquake-triggered landslide hazards: a case study of the Mw6.1 2014 Ludian, China earthquake

Loading next page...
 
/lp/springer_journal/a-method-for-quick-assessment-of-earthquake-triggered-landslide-YZSBSKXIYv

References (59)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Geoengineering, Foundations, Hydraulics; Geoecology/Natural Processes; Nature Conservation
ISSN
1435-9529
eISSN
1435-9537
DOI
10.1007/s10064-018-1313-7
Publisher site
See Article on Publisher Site

Abstract

Rapid assessment of the distribution of earthquake-triggered landslides is an important component of effective disaster mitigation. The effort should be based on both seismic landslide susceptibility and the ground shaking intensity, which is usually measured by peak ground acceleration (PGA). In this paper, we address this issue by analyzing data from the Mw6.1 2014 Ludian, China earthquake. The Newmark method of rigid-block modeling was applied to calculate the critical acceleration of slopes in the study area, which serve as measurement of slope stability under seismic load. The assessment of earthquake-triggered landslide hazard was conducted by comparing these critical accelerations with the distribution of known PGA values. The study area was classified into zones of five levels of landslide hazard: high, moderate high, moderate, light, and very light. Comparison shows that the resulting landslide hazard zones agree with the actual distribution of earthquake-triggered landslides. Nearly 70% of landslides are located in areas of high and moderately high hazard, which occupy only 17% of the study region. This paper demonstrates that using PGA, combined with the analysis of seismic landslide susceptibility, allows a reliable assessment of earthquake-triggered landslides hazards. This easy-operation mapping method is expected to be helpful in emergency preparedness planning, as well as in seismic landslide hazard zoning.

Journal

Bulletin of Engineering Geology and the EnvironmentSpringer Journals

Published: Jun 1, 2018

There are no references for this article.