A method for measuring the thermal geometric parameters of large hot rectangular forgings based on projection feature lines

A method for measuring the thermal geometric parameters of large hot rectangular forgings based... The online dimensional measurement of large hot forging is an important procedure in the forging process. Because of different production demands, the final geometrical shapes of large forgings are usually different (e.g. cylindrical columns, rectangular prisms). Forgings of different geometric shapes need to be measured along different dimensions. For rectangular forgings, the lengths primarily need to be measured. A generalized measurement system for different geometric shapes of forgings cannot provide the accuracy of measurement systems targeted at measuring a known shape. Based on the characteristics of the rectangular forgings, a thermal dimensional measurement system is proposed in this paper. The localization, rapid extraction of feature points and method for measuring the dimensions of rectangular forgings are presented. The proposed methods can easily and efficiently extract the feature points of the forging. The experiment results show that the method proposed in this paper has the advantages of high precision and high efficiency, which is appropriate for online measurement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Machine Vision and Applications Springer Journals

A method for measuring the thermal geometric parameters of large hot rectangular forgings based on projection feature lines

Loading next page...
 
/lp/springer_journal/a-method-for-measuring-the-thermal-geometric-parameters-of-large-hot-SmzGKcHWDF
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Computer Science; Pattern Recognition; Image Processing and Computer Vision; Communications Engineering, Networks
ISSN
0932-8092
eISSN
1432-1769
D.O.I.
10.1007/s00138-017-0900-0
Publisher site
See Article on Publisher Site

Abstract

The online dimensional measurement of large hot forging is an important procedure in the forging process. Because of different production demands, the final geometrical shapes of large forgings are usually different (e.g. cylindrical columns, rectangular prisms). Forgings of different geometric shapes need to be measured along different dimensions. For rectangular forgings, the lengths primarily need to be measured. A generalized measurement system for different geometric shapes of forgings cannot provide the accuracy of measurement systems targeted at measuring a known shape. Based on the characteristics of the rectangular forgings, a thermal dimensional measurement system is proposed in this paper. The localization, rapid extraction of feature points and method for measuring the dimensions of rectangular forgings are presented. The proposed methods can easily and efficiently extract the feature points of the forging. The experiment results show that the method proposed in this paper has the advantages of high precision and high efficiency, which is appropriate for online measurement.

Journal

Machine Vision and ApplicationsSpringer Journals

Published: Jan 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial