A Method for Calculating the Volume and Surface Area in Rice Mesophyll Cells

A Method for Calculating the Volume and Surface Area in Rice Mesophyll Cells A method was developed for determining the surface area and volume of rice mesophyll cells of elaborate configuration. The method was employed to calculate these indices in several types of rice mesophyll cells found in seventy samples (53 species) of diverse origin coming from Japan, China, Korea, India, Nepal, Australia, France, Italy, Uzbekistan, Afghanistan, and Krasnodar and Primorskii regions. The cultivars of diverse geographic origin varied in cell shape and size due to the number, size, and arrangement of chloroplasts. When the volumes and surface areas of leaf mesophyll cells were compared using the method reported herein and a simple empirical model of the cell as a single ellipsoid, the two methods produced relatively similar data for cell volume; however, the surface area calculated by the former method was about two times larger than in the latter case. The method described in this paper allows for accurate calculations of the volume and surface area of rice mesophyll cells when data are available on the cell shape and linear dimensions and the number of chloroplasts per cell. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

A Method for Calculating the Volume and Surface Area in Rice Mesophyll Cells

Loading next page...
 
/lp/springer_journal/a-method-for-calculating-the-volume-and-surface-area-in-rice-mesophyll-T1k6nPTpqm
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1021961123504
Publisher site
See Article on Publisher Site

Abstract

A method was developed for determining the surface area and volume of rice mesophyll cells of elaborate configuration. The method was employed to calculate these indices in several types of rice mesophyll cells found in seventy samples (53 species) of diverse origin coming from Japan, China, Korea, India, Nepal, Australia, France, Italy, Uzbekistan, Afghanistan, and Krasnodar and Primorskii regions. The cultivars of diverse geographic origin varied in cell shape and size due to the number, size, and arrangement of chloroplasts. When the volumes and surface areas of leaf mesophyll cells were compared using the method reported herein and a simple empirical model of the cell as a single ellipsoid, the two methods produced relatively similar data for cell volume; however, the surface area calculated by the former method was about two times larger than in the latter case. The method described in this paper allows for accurate calculations of the volume and surface area of rice mesophyll cells when data are available on the cell shape and linear dimensions and the number of chloroplasts per cell.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off