A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements

A method for automatic estimation of instantaneous local uncertainty in particle image... The uncertainty of any measurement is the interval in which one believes the actual error lies. Particle image velocimetry (PIV) measurement error depends on the PIV algorithm used, a wide range of user inputs, flow characteristics, and the experimental setup. Since these factors vary in time and space, they lead to nonuniform error throughout the flow field. As such, a universal PIV uncertainty estimate is not adequate and can be misleading. This is of particular interest when PIV data are used for comparison with computational or experimental data. A method to estimate the uncertainty from sources detectable in the raw images and due to the PIV calculation of each individual velocity measurement is presented. The relationship between four error sources and their contribution to PIV error is first determined. The sources, or parameters, considered are particle image diameter, particle density, particle displacement, and velocity gradient, although this choice in parameters is arbitrary and may not be complete. This information provides a four-dimensional “uncertainty surface” specific to the PIV algorithm used. After PIV processing, our code “measures" the value of each of these parameters and estimates the velocity uncertainty due to the PIV algorithm for each vector in the flow field. The reliability of our methodology is validated using known flow fields so the actual error can be determined. Our analysis shows that, for most flows, the uncertainty distribution obtained using this method fits the confidence interval. An experiment is used to show that systematic uncertainties are accurately computed for a jet flow. The method is general and can be adapted to any PIV analysis, provided that the relevant error sources can be identified for a given experiment and the appropriate parameters can be quantified from the images obtained. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements

Loading next page...
 
/lp/springer_journal/a-method-for-automatic-estimation-of-instantaneous-local-uncertainty-zstTnyNfBb
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1341-1
Publisher site
See Article on Publisher Site

Abstract

The uncertainty of any measurement is the interval in which one believes the actual error lies. Particle image velocimetry (PIV) measurement error depends on the PIV algorithm used, a wide range of user inputs, flow characteristics, and the experimental setup. Since these factors vary in time and space, they lead to nonuniform error throughout the flow field. As such, a universal PIV uncertainty estimate is not adequate and can be misleading. This is of particular interest when PIV data are used for comparison with computational or experimental data. A method to estimate the uncertainty from sources detectable in the raw images and due to the PIV calculation of each individual velocity measurement is presented. The relationship between four error sources and their contribution to PIV error is first determined. The sources, or parameters, considered are particle image diameter, particle density, particle displacement, and velocity gradient, although this choice in parameters is arbitrary and may not be complete. This information provides a four-dimensional “uncertainty surface” specific to the PIV algorithm used. After PIV processing, our code “measures" the value of each of these parameters and estimates the velocity uncertainty due to the PIV algorithm for each vector in the flow field. The reliability of our methodology is validated using known flow fields so the actual error can be determined. Our analysis shows that, for most flows, the uncertainty distribution obtained using this method fits the confidence interval. An experiment is used to show that systematic uncertainties are accurately computed for a jet flow. The method is general and can be adapted to any PIV analysis, provided that the relevant error sources can be identified for a given experiment and the appropriate parameters can be quantified from the images obtained.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 18, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off