A measure of non-Gaussianity for quantum states

A measure of non-Gaussianity for quantum states We propose a measure of non-Gaussianity for quantum states of a system of n oscillator modes. Our measure is based on the quasi-probability $${Q(\alpha),\alpha\in\mathcal{C}^n}$$ . Since any measure of non-Gaussianity is necessarily an attempt at making a quantitative statement on the departure of the shape of the Q function from Gaussian, any good measure of non-Gaussianity should be invariant under transformations which do not alter the shape of the Q functions, namely displacements, passage through passive linear systems, and uniform scaling of all the phase space variables: Q(α) → λ2n Q(λα). Our measure which meets this ‘shape criterion’ is computed for a few families of states, and the results are contrasted with existing measures of non-Gaussianity. The shape criterion implies, in particular, that the non-Gaussianity of the photon-added thermal states should be independent of temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A measure of non-Gaussianity for quantum states

Loading next page...
 
/lp/springer_journal/a-measure-of-non-gaussianity-for-quantum-states-SNYwyBtGml
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Theoretical, Mathematical and Computational Physics; Mathematics, general; Quantum Physics; Physics, general; Computer Science, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0314-2
Publisher site
See Article on Publisher Site

Abstract

We propose a measure of non-Gaussianity for quantum states of a system of n oscillator modes. Our measure is based on the quasi-probability $${Q(\alpha),\alpha\in\mathcal{C}^n}$$ . Since any measure of non-Gaussianity is necessarily an attempt at making a quantitative statement on the departure of the shape of the Q function from Gaussian, any good measure of non-Gaussianity should be invariant under transformations which do not alter the shape of the Q functions, namely displacements, passage through passive linear systems, and uniform scaling of all the phase space variables: Q(α) → λ2n Q(λα). Our measure which meets this ‘shape criterion’ is computed for a few families of states, and the results are contrasted with existing measures of non-Gaussianity. The shape criterion implies, in particular, that the non-Gaussianity of the photon-added thermal states should be independent of temperature.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 19, 2011

References

  • Quantum information with Gaussian states
    Wang, X.-B.; Hiroshima, T.; Tomita, A.; Hayashi, M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off