A Mathematical Model of Electrolyte and Fluid Transport across Corneal Endothelium

A Mathematical Model of Electrolyte and Fluid Transport across Corneal Endothelium To predict the behavior of a transporting epithelium by intuitive means can be complex and frustrating. As the number of parameters to be considered increases beyond a few, the task can be termed impossible. The alternative is to model epithelial behavior by mathematical means. For that to be feasible, it has been presumed that a large amount of experimental information is required, so as to be able to use known values for the majority of kinetic parameters. However, in the present case, we are modeling corneal endothelial behavior beginning with experimental values for only five of eleven parameters. The remaining parameter values are calculated assuming cellular steady state and using algebraic software. With that as base, as in preceding treatments but with a distribution of channels/transporters suited to the endothelium, temporal cell and tissue behavior are computed by a program written in Basic that monitors changes in chemical and electrical driving forces across cell membranes and the paracellular pathway. We find that the program reproduces quite well the behaviors experimentally observed for the translayer electrical potential difference and rate of fluid transport, (a) in the steady state, (b) after perturbations by changes in ambient conditions HCO 3 − , Na+, and Cl− concentrations), and (c) after challenge by inhibitors (ouabain, DIDS, Na+- and Cl−-channel inhibitors). In addition, we have used the program to compare predictions of translayer fluid transport by two competing theories, electro-osmosis and local osmosis. Only predictions using electro-osmosis fit all the experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Mathematical Model of Electrolyte and Fluid Transport across Corneal Endothelium

Loading next page...
 
/lp/springer_journal/a-mathematical-model-of-electrolyte-and-fluid-transport-across-corneal-IzXT5RgHLz
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-004-0730-7
Publisher site
See Article on Publisher Site

Abstract

To predict the behavior of a transporting epithelium by intuitive means can be complex and frustrating. As the number of parameters to be considered increases beyond a few, the task can be termed impossible. The alternative is to model epithelial behavior by mathematical means. For that to be feasible, it has been presumed that a large amount of experimental information is required, so as to be able to use known values for the majority of kinetic parameters. However, in the present case, we are modeling corneal endothelial behavior beginning with experimental values for only five of eleven parameters. The remaining parameter values are calculated assuming cellular steady state and using algebraic software. With that as base, as in preceding treatments but with a distribution of channels/transporters suited to the endothelium, temporal cell and tissue behavior are computed by a program written in Basic that monitors changes in chemical and electrical driving forces across cell membranes and the paracellular pathway. We find that the program reproduces quite well the behaviors experimentally observed for the translayer electrical potential difference and rate of fluid transport, (a) in the steady state, (b) after perturbations by changes in ambient conditions HCO 3 − , Na+, and Cl− concentrations), and (c) after challenge by inhibitors (ouabain, DIDS, Na+- and Cl−-channel inhibitors). In addition, we have used the program to compare predictions of translayer fluid transport by two competing theories, electro-osmosis and local osmosis. Only predictions using electro-osmosis fit all the experimental data.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off