A mathematical approach to the boolean minimization problem

A mathematical approach to the boolean minimization problem Any minimization problem involves a computer algorithm. Many such algorithms have been developed for the boolean minimizations, in diverse areas from computer science to social sciences (with the famous QCA algorithm). For a small number of entries (causal conditions in the QCA) any such algorithm will find a minimal solution, especially with the aid of the modern computers. However, for a large number of conditions a quick and complete solution is not easy to find using an algorithmic approach, due to the extremely large space of possible combinations to search in. In this article I will demonstrate a simple alternative solution, a mathematical method to obtain all possible minimized prime implicants. This method is not only easier to understand than other complex algorithms, but it proves to be a faster method to obtain an exact and complete boolean solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

A mathematical approach to the boolean minimization problem

Loading next page...
 
/lp/springer_journal/a-mathematical-approach-to-the-boolean-minimization-problem-M6bzSKNlFe
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-008-9183-x
Publisher site
See Article on Publisher Site

Abstract

Any minimization problem involves a computer algorithm. Many such algorithms have been developed for the boolean minimizations, in diverse areas from computer science to social sciences (with the famous QCA algorithm). For a small number of entries (causal conditions in the QCA) any such algorithm will find a minimal solution, especially with the aid of the modern computers. However, for a large number of conditions a quick and complete solution is not easy to find using an algorithmic approach, due to the extremely large space of possible combinations to search in. In this article I will demonstrate a simple alternative solution, a mathematical method to obtain all possible minimized prime implicants. This method is not only easier to understand than other complex algorithms, but it proves to be a faster method to obtain an exact and complete boolean solution.

Journal

Quality & QuantitySpringer Journals

Published: Oct 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off