A mass spectrometry-based forensic toolbox for imaging and detecting biological fluid evidence in finger marks and fingernail scrapings

A mass spectrometry-based forensic toolbox for imaging and detecting biological fluid evidence in... During a crime, biological material such as blood or vaginal fluid may become smeared on the fingers of the victim or suspect or trapped under their fingernails. The type of trapped fluid is extremely valuable forensic information. Furthermore, if either person touches an object at the crime scene with their ‘contaminated’ finger then a ‘contaminated’ finger mark may be deposited. Such marks have great value as they could identify not only who deposited the mark but also who they touched and which part of the body they touched. Here, we describe preliminary work towards a ‘toolbox’ of techniques based on mass spectrometry (MS) for the identification of biological fluid traces under fingernails or the imaging of them in finger marks. Liquid chromatography-multidimensional MS was effective for the detection of protein biomarkers characteristic of vaginal fluid and blood trapped under fingernails, even after hands had been washed. In regard to examination of finger marks for the presence of biological fluids, the most practical implementation of any technique is to integrate it with, but after, routine crime scene finger mark enhancement has been applied. Here, we demonstrate the usage of matrix-assisted laser desorption ionization-time of flight-MS for the detection and mapping of proteins and peptides from body fluids in finger marks, including marks enhanced using aluminium-containing magnetic powder and then ‘lifted’ with adhesive tape. Hitherto, only small molecules have been detected in enhanced, lifted marks. In a novel development, aluminium in the enhancement powder assisted ionization of small molecules in finger marks to the extent that conventional matrix was not required for MS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Legal Medicine Springer Journals

A mass spectrometry-based forensic toolbox for imaging and detecting biological fluid evidence in finger marks and fingernail scrapings

Loading next page...
 
/lp/springer_journal/a-mass-spectrometry-based-forensic-toolbox-for-imaging-and-detecting-dM8F4fFCLu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Medicine & Public Health; Forensic Medicine; Medical Law; Medicine/Public Health, general
ISSN
0937-9827
eISSN
1437-1596
D.O.I.
10.1007/s00414-017-1587-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial