A Mass Conservative Scheme for Fluid–Structure Interaction Problems by the Staggered Discontinuous Galerkin Method

A Mass Conservative Scheme for Fluid–Structure Interaction Problems by the Staggered... In this paper, we develop a new mass conservative numerical scheme for the simulations of a class of fluid–structure interaction problems. We will use the immersed boundary method to model the fluid–structure interaction, while the fluid flow is governed by the incompressible Navier–Stokes equations. The immersed boundary method is proven to be a successful scheme to model fluid–structure interactions. To ensure mass conservation, we will use the staggered discontinuous Galerkin method to discretize the incompressible Navier–Stokes equations. The staggered discontinuous Galerkin method is able to preserve the skew-symmetry of the convection term. In addition, by using a local postprocessing technique, the weakly divergence free velocity can be used to compute a new postprocessed velocity, which is exactly divergence free and has a superconvergence property. This strongly divergence free velocity field is the key to the mass conservation. Furthermore, energy stability is improved by the skew-symmetric discretization of the convection term. We will present several numerical results to show the performance of the method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scientific Computing Springer Journals

A Mass Conservative Scheme for Fluid–Structure Interaction Problems by the Staggered Discontinuous Galerkin Method

Loading next page...
 
/lp/springer_journal/a-mass-conservative-scheme-for-fluid-structure-interaction-problems-by-shisVTRw7X
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Mathematics; Algorithms; Computational Mathematics and Numerical Analysis; Mathematical and Computational Engineering; Theoretical, Mathematical and Computational Physics
ISSN
0885-7474
eISSN
1573-7691
D.O.I.
10.1007/s10915-017-0500-1
Publisher site
See Article on Publisher Site

Abstract

In this paper, we develop a new mass conservative numerical scheme for the simulations of a class of fluid–structure interaction problems. We will use the immersed boundary method to model the fluid–structure interaction, while the fluid flow is governed by the incompressible Navier–Stokes equations. The immersed boundary method is proven to be a successful scheme to model fluid–structure interactions. To ensure mass conservation, we will use the staggered discontinuous Galerkin method to discretize the incompressible Navier–Stokes equations. The staggered discontinuous Galerkin method is able to preserve the skew-symmetry of the convection term. In addition, by using a local postprocessing technique, the weakly divergence free velocity can be used to compute a new postprocessed velocity, which is exactly divergence free and has a superconvergence property. This strongly divergence free velocity field is the key to the mass conservation. Furthermore, energy stability is improved by the skew-symmetric discretization of the convection term. We will present several numerical results to show the performance of the method.

Journal

Journal of Scientific ComputingSpringer Journals

Published: Jul 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off