A Manifold Learning Approach for Integrated Computational Materials Engineering

A Manifold Learning Approach for Integrated Computational Materials Engineering Image-based simulation is becoming an appealing technique to homogenize properties of real microstructures of heterogeneous materials. However fast computation techniques are needed to take decisions in a limited time-scale. Techniques based on standard computational homogenization are seriously compromised by the real-time constraint. The combination of model reduction techniques and high performance computing contribute to alleviate such a constraint but the amount of computation remains excessive in many cases. In this paper we consider an alternative route that makes use of techniques traditionally considered for machine learning purposes in order to extract the manifold in which data and fields can be interpolated accurately and in real-time and with minimum amount of online computation. Locallly Linear Embedding is considered in this work for the real-time thermal homogenization of heterogeneous microstructures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Computational Methods in Engineering Springer Journals

A Manifold Learning Approach for Integrated Computational Materials Engineering

Loading next page...
 
/lp/springer_journal/a-manifold-learning-approach-for-integrated-computational-materials-RPY8IigaJY
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by CIMNE, Barcelona, Spain
Subject
Engineering; Mathematical and Computational Engineering
ISSN
1134-3060
eISSN
1886-1784
D.O.I.
10.1007/s11831-016-9172-5
Publisher site
See Article on Publisher Site

Abstract

Image-based simulation is becoming an appealing technique to homogenize properties of real microstructures of heterogeneous materials. However fast computation techniques are needed to take decisions in a limited time-scale. Techniques based on standard computational homogenization are seriously compromised by the real-time constraint. The combination of model reduction techniques and high performance computing contribute to alleviate such a constraint but the amount of computation remains excessive in many cases. In this paper we consider an alternative route that makes use of techniques traditionally considered for machine learning purposes in order to extract the manifold in which data and fields can be interpolated accurately and in real-time and with minimum amount of online computation. Locallly Linear Embedding is considered in this work for the real-time thermal homogenization of heterogeneous microstructures.

Journal

Archives of Computational Methods in EngineeringSpringer Journals

Published: Mar 21, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off