A maize defense-inducible gene is a major facilitator superfamily member related to bacterial multidrug resistance efflux antiporters

A maize defense-inducible gene is a major facilitator superfamily member related to bacterial... A defense-inducible maize gene was discovered through global mRNA profiling analysis. Its mRNA expression is induced by pathogens and defense-related conditions in various tissues involving both resistant and susceptible interactions. These include Cochliobolus heterostrophus and Cochliobolus carbonum infection, ultraviolet light treatment, the Les9 disease lesion mimic background, and plant tissues engineered to express flavonoids or the avirulence gene avrRxv. The gene was named Zm-mfs1 after it was found to encode a protein related to the major facilitator superfamily (MFS) of intregral membrane permeases. It is most closely related to the bacterial multidrug efflux protein family, typified by the Escherichia coli TetA, which are proton motive force antiporters that export antimicrobial drugs and other compounds, but which can be also involved in potassium export/proton import or potassium re-uptake. Other related plant gene sequences in maize, rice, and Arabidopsis were identified, three of which are introduced here. Among this new plant MFS subfamily, the characteristic MFS motif in cytoplasmic TM2-TM3 loop, and the antiporter family motif in transmembrane domain TM5 are both conserved, however the TM7 and the cytoplasmic TM8-TM9 loop are divergent from those of the bacterial multidrug transporters. We hypothesize that Zm-Mfs1 is a prototype of a new class of plant defense-related proteins that could be involved in either of three nonexclusive roles: (1) export of antimicrobial compounds produced by plant pathogens; (2) export of plant-generated antimicrobial compounds; and (3) potassium export and/or re-uptake, as can occur in plant defense reactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A maize defense-inducible gene is a major facilitator superfamily member related to bacterial multidrug resistance efflux antiporters

Loading next page...
Kluwer Academic Publishers
Copyright © 2003 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial