A low-dimensional approach to closed-loop control of a Mach 0.6 jet

A low-dimensional approach to closed-loop control of a Mach 0.6 jet Simultaneous time-resolved measurements of the near-field hydrodynamic pressure field, 2-component streamwise velocity field, and far-field acoustics are taken for an un-heated, axisymmetric Mach 0.6 jet in co-flow. Synthetic jet actuators placed around the periphery of the nozzle lip provide localized perturbations to the shear layer. The goal of this study was to develop an understanding of how the acoustic nature of the jet responds to unsteady shear layer excitation, and subsequently how this can be used to reduce the far-field noise. Review of the cross-correlations between the most energetic low-order spatial Fourier modes of the pressure and the far-field region reveals that mode 0 has a strong correlation and mode 1 has a weak correlation with the far-field. These modes are emulated with the synthetic jet array and used as drivers of the developing shear layer. In open loop forcing configurations, there is energy transfer among spatial scales, enhanced mixing, a reconfiguration of the low-dimensional spatial structure, and an increase in the overall sound pressure level (OASPL). In the closed loop configuration, changes to these quantities are more subtle but there is a reduction in the overall fluctuating sound pressure level OASPLf by 1.35 dB. It is argued that this reduction is correlated with the closed loop control feeding back the dynamical low-order information measured in the largest noise producing region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A low-dimensional approach to closed-loop control of a Mach 0.6 jet

Loading next page...
 
/lp/springer_journal/a-low-dimensional-approach-to-closed-loop-control-of-a-mach-0-6-jet-F0CnzBdxbX
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1484-8
Publisher site
See Article on Publisher Site

Abstract

Simultaneous time-resolved measurements of the near-field hydrodynamic pressure field, 2-component streamwise velocity field, and far-field acoustics are taken for an un-heated, axisymmetric Mach 0.6 jet in co-flow. Synthetic jet actuators placed around the periphery of the nozzle lip provide localized perturbations to the shear layer. The goal of this study was to develop an understanding of how the acoustic nature of the jet responds to unsteady shear layer excitation, and subsequently how this can be used to reduce the far-field noise. Review of the cross-correlations between the most energetic low-order spatial Fourier modes of the pressure and the far-field region reveals that mode 0 has a strong correlation and mode 1 has a weak correlation with the far-field. These modes are emulated with the synthetic jet array and used as drivers of the developing shear layer. In open loop forcing configurations, there is energy transfer among spatial scales, enhanced mixing, a reconfiguration of the low-dimensional spatial structure, and an increase in the overall sound pressure level (OASPL). In the closed loop configuration, changes to these quantities are more subtle but there is a reduction in the overall fluctuating sound pressure level OASPLf by 1.35 dB. It is argued that this reduction is correlated with the closed loop control feeding back the dynamical low-order information measured in the largest noise producing region.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 20, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off