A low complexity scheme for entanglement distributor buses

A low complexity scheme for entanglement distributor buses For technological purposes and theoretical curiosity, it is very interesting to have a building block that produces a considerable amount of entanglement between on-demand sites through a simple control of a few sites. Here, we consider permanently-coupled spin networks and study entanglement generation between qubit pairs to find low-complexity structures capable of generating considerable entanglement between various qubit pairs. We find that in axially symmetric networks the generated entanglement between some qubit pairs is rather larger than generic networks. We show that in uniformly-coupled spin rings each pair can be considerably entangled through controlling suitable vertices. To set the location of controlling-vertices, we observe that the symmetry has to be broken for a definite time. To achieve this, a magnetic flux can be applied to break symmetry via Aharonov-Bohm effect. Such a set up can serve as an efficient entanglement distributor bus in which each vertex-pair can be efficiently entangled through exciting only one fixed vertex and controlling the evolution time. The low-complexity of this scheme makes it attractive for use in nanoscale quantum information processors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A low complexity scheme for entanglement distributor buses

Loading next page...
 
/lp/springer_journal/a-low-complexity-scheme-for-entanglement-distributor-buses-jFJH9T0Mz7
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-010-0214-x
Publisher site
See Article on Publisher Site

Abstract

For technological purposes and theoretical curiosity, it is very interesting to have a building block that produces a considerable amount of entanglement between on-demand sites through a simple control of a few sites. Here, we consider permanently-coupled spin networks and study entanglement generation between qubit pairs to find low-complexity structures capable of generating considerable entanglement between various qubit pairs. We find that in axially symmetric networks the generated entanglement between some qubit pairs is rather larger than generic networks. We show that in uniformly-coupled spin rings each pair can be considerably entangled through controlling suitable vertices. To set the location of controlling-vertices, we observe that the symmetry has to be broken for a definite time. To achieve this, a magnetic flux can be applied to break symmetry via Aharonov-Bohm effect. Such a set up can serve as an efficient entanglement distributor bus in which each vertex-pair can be efficiently entangled through exciting only one fixed vertex and controlling the evolution time. The low-complexity of this scheme makes it attractive for use in nanoscale quantum information processors.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 27, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off