A low [Ca2+]i-induced enhancement of cAMP-activated ciliary beating by PDE1A inhibition in mouse airway cilia

A low [Ca2+]i-induced enhancement of cAMP-activated ciliary beating by PDE1A inhibition in mouse... This study demonstrated that PDE1 (phosphodiesterase 1) existing in the ciliary beat frequency (CBF)-regulating metabolon regulates CBF in procaterol-stimulated lung airway ciliary cells of mouse. Procaterol (an β2-agonist) increased the ciliary bend angle (CBA) and CBF via cAMP accumulation in the ciliary cells of mice: interestingly, the time course of CBF increase was slower than that of CBA increase. However, IBMX (3-isobutyl-1-methylxanthine, an inhibitor of PDE) increased CBA and CBF in an identical time course. Lowering an intracellular Ca2+ concentration ([Ca2+]i) caused by switching to an EGTA-containing Ca2+-free solution from normal one elevated the procaterol-induced increasing rate of CBF. These observations suggest that Ca2+-dependent PDE1 controls cAMP-stimulated CBF increase. Either application of 8MmIBMX (8-methoxymethyl-IBMX, a selective PDE1 inhibitor), BAPTA-AM (an intracellular Ca2+ chelator), or calmidazolium (an inhibitior of calmodulin) alone increased CBA and CBF in the lung airway ciliary cells and increased cAMP contents in the isolated lung cells, and like IBMX, each application of the compound made the time courses of CBA and CBF increase stimulated by procaterol identical. The immunoelectron microscopic examinations revealed that PDE1A exists in the space between the nine doublet tubules ring and plasma membrane in the lung airway cilium, where the outer dynein arm (a molecular motor regulating CBF) functions. In conclusion, PDE1A is a key factor slowing the time course of the procaterol-induced increase in CBF via degradation of cAMP in the CBF-regulating metabolon of the mouse lung airway cilia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pflügers Archiv European Journal of Physiologyl of Physiology Springer Journals
Loading next page...
 
/lp/springer_journal/a-low-ca2-i-induced-enhancement-of-camp-activated-ciliary-beating-by-AmnkJmeXlN
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Human Physiology; Molecular Medicine; Neurosciences; Cell Biology; Receptors
ISSN
0031-6768
eISSN
1432-2013
D.O.I.
10.1007/s00424-017-1988-9
Publisher site
See Article on Publisher Site

Abstract

This study demonstrated that PDE1 (phosphodiesterase 1) existing in the ciliary beat frequency (CBF)-regulating metabolon regulates CBF in procaterol-stimulated lung airway ciliary cells of mouse. Procaterol (an β2-agonist) increased the ciliary bend angle (CBA) and CBF via cAMP accumulation in the ciliary cells of mice: interestingly, the time course of CBF increase was slower than that of CBA increase. However, IBMX (3-isobutyl-1-methylxanthine, an inhibitor of PDE) increased CBA and CBF in an identical time course. Lowering an intracellular Ca2+ concentration ([Ca2+]i) caused by switching to an EGTA-containing Ca2+-free solution from normal one elevated the procaterol-induced increasing rate of CBF. These observations suggest that Ca2+-dependent PDE1 controls cAMP-stimulated CBF increase. Either application of 8MmIBMX (8-methoxymethyl-IBMX, a selective PDE1 inhibitor), BAPTA-AM (an intracellular Ca2+ chelator), or calmidazolium (an inhibitior of calmodulin) alone increased CBA and CBF in the lung airway ciliary cells and increased cAMP contents in the isolated lung cells, and like IBMX, each application of the compound made the time courses of CBA and CBF increase stimulated by procaterol identical. The immunoelectron microscopic examinations revealed that PDE1A exists in the space between the nine doublet tubules ring and plasma membrane in the lung airway cilium, where the outer dynein arm (a molecular motor regulating CBF) functions. In conclusion, PDE1A is a key factor slowing the time course of the procaterol-induced increase in CBF via degradation of cAMP in the CBF-regulating metabolon of the mouse lung airway cilia.

Journal

Pflügers Archiv European Journal of Physiologyl of PhysiologySpringer Journals

Published: May 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off