A Look at Arginine in Membranes

A Look at Arginine in Membranes Here, we review the current knowledge about the energetics of arginine insertion into the bilayer hydrocarbon core, and we discuss discrepancies between experimental and computational studies of the insertion process. While simulations suggest that it should be very costly to place arginine into the hydrocarbon core, experiments show that arginine is found there. Both types of studies suggest that arginine insertion into the bilayer involves substantial bilayer deformation, with multiple hydrogen bonds between the arginine guanidinium group and lipid polar groups. It is possible that the discrepancies concerning the insertion cost of arginine arise because simulations overestimate the cost associated with bilayer deformation and underestimate the ability of the bilayer to adapt to charged and polar groups. This is an active area of research, and there is no doubt that a consensus view of arginine in membranes will soon emerge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Look at Arginine in Membranes

Loading next page...
 
/lp/springer_journal/a-look-at-arginine-in-membranes-vt8P4jND46
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9323-9
Publisher site
See Article on Publisher Site

Abstract

Here, we review the current knowledge about the energetics of arginine insertion into the bilayer hydrocarbon core, and we discuss discrepancies between experimental and computational studies of the insertion process. While simulations suggest that it should be very costly to place arginine into the hydrocarbon core, experiments show that arginine is found there. Both types of studies suggest that arginine insertion into the bilayer involves substantial bilayer deformation, with multiple hydrogen bonds between the arginine guanidinium group and lipid polar groups. It is possible that the discrepancies concerning the insertion cost of arginine arise because simulations overestimate the cost associated with bilayer deformation and underestimate the ability of the bilayer to adapt to charged and polar groups. This is an active area of research, and there is no doubt that a consensus view of arginine in membranes will soon emerge.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 25, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off