# A logarithmically improved regularity criterion for the supercritical quasi-geostrophic equations in Besov space

A logarithmically improved regularity criterion for the supercritical quasi-geostrophic equations... In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space $$\dot B_{\infty ,\infty }^{ - r}\left( {{\mathbb{R}^2}} \right)$$ B ˙ ∞ , ∞ − r ( ℝ 2 ) . The result shows that if θ is a weak solutions satisfies $$\int_0^T {\frac{{\left\| {\nabla \theta ( \cdot ,s)} \right\|_{\dot B_{\infty ,\infty }^{ - r} }^{\tfrac{\alpha } {{\alpha - r}}} }} {{1 + \ln \left( {e + \left\| {\nabla ^ \bot \theta ( \cdot ,s)} \right\|_{L^{\tfrac{2} {r}} } } \right)!}}ds < \infty for some 0 < r < \alpha and 0 < \alpha < 1,}$$ ∫ 0 T ∥ ∇ θ ( ⋅ , s ) ∥ B ˙ ∞ , ∞ − r α α − r 1 + ln ( e + ∥ ∇ ⊥ θ ( ⋅ , s ) ∥ L 2 r ) ! d s < ∞ f o r s o m e 0 < r < α a n d 0 < α < 1 , then θ is regular at t = T. In view of the embedding $${L^{\frac{2}{r}}} \subset M_{\frac{2}{r}}^p \subset \dot B_{\infty ,\infty }^{ - r}$$ L 2 r ⊂ M 2 r p ⊂ B ˙ ∞ , ∞ − r with $$2 \leqslant p < \frac{2}{r}$$ 2 ≤ p < 2 r and 0 ≤ r < 1, we see that our result extends the results due to [20] and [31]. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mathematicae Applicatae Sinica Springer Journals

# A logarithmically improved regularity criterion for the supercritical quasi-geostrophic equations in Besov space

, Volume 33 (3) – Aug 7, 2017
8 pages

/lp/springer_journal/a-logarithmically-improved-regularity-criterion-for-the-supercritical-6Y0KU0mKs2
Publisher
Springer Berlin Heidelberg
Subject
Mathematics; Applications of Mathematics; Math Applications in Computer Science; Theoretical, Mathematical and Computational Physics
ISSN
0168-9673
eISSN
1618-3932
D.O.I.
10.1007/s10255-017-0690-1
Publisher site
See Article on Publisher Site

### Abstract

In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space $$\dot B_{\infty ,\infty }^{ - r}\left( {{\mathbb{R}^2}} \right)$$ B ˙ ∞ , ∞ − r ( ℝ 2 ) . The result shows that if θ is a weak solutions satisfies $$\int_0^T {\frac{{\left\| {\nabla \theta ( \cdot ,s)} \right\|_{\dot B_{\infty ,\infty }^{ - r} }^{\tfrac{\alpha } {{\alpha - r}}} }} {{1 + \ln \left( {e + \left\| {\nabla ^ \bot \theta ( \cdot ,s)} \right\|_{L^{\tfrac{2} {r}} } } \right)!}}ds < \infty for some 0 < r < \alpha and 0 < \alpha < 1,}$$ ∫ 0 T ∥ ∇ θ ( ⋅ , s ) ∥ B ˙ ∞ , ∞ − r α α − r 1 + ln ( e + ∥ ∇ ⊥ θ ( ⋅ , s ) ∥ L 2 r ) ! d s < ∞ f o r s o m e 0 < r < α a n d 0 < α < 1 , then θ is regular at t = T. In view of the embedding $${L^{\frac{2}{r}}} \subset M_{\frac{2}{r}}^p \subset \dot B_{\infty ,\infty }^{ - r}$$ L 2 r ⊂ M 2 r p ⊂ B ˙ ∞ , ∞ − r with $$2 \leqslant p < \frac{2}{r}$$ 2 ≤ p < 2 r and 0 ≤ r < 1, we see that our result extends the results due to [20] and [31].

### Journal

Acta Mathematicae Applicatae SinicaSpringer Journals

Published: Aug 7, 2017

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month ### Explore the DeepDyve Library ### Search Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly ### Organize Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place. ### Access Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals. ### Your journals are on DeepDyve Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more. All the latest content is available, no embargo periods. DeepDyve ### Freelancer DeepDyve ### Pro Price FREE$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations