Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Logarithmic Inequality

A Logarithmic Inequality The inequality $$\ln {\kern 1pt} \ln \left( {r - \ln r} \right) + 1 < \mathop {\min }\limits_{0 < x \leqslant r - 1} \left( {\ln x + {x^{ - 1}}\ln \left( {r - x} \right)} \right) < \ln {\kern 1pt} \ln \left( {r - \ln \left( {r - {2^{ - 1}}\ln r} \right)} \right) + 1,$$ ln ln ( r − ln r ) + 1 < min 0 < x ≤ r − 1 ( ln x + x − 1 ln ( r − x ) ) < ln ln ( r − ln ( r − 2 − 1 ln r ) ) + 1 , where r > 2, is proved. A combinatorial optimization problem which involves the function to be minimized is described. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Notes Springer Journals

A Logarithmic Inequality

Mathematical Notes , Volume 103 (2) – Mar 14, 2018

Loading next page...
 
/lp/springer_journal/a-logarithmic-inequality-jAy0k50p44

References (10)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Mathematics; Mathematics, general
ISSN
0001-4346
eISSN
1573-8876
DOI
10.1134/S0001434618010224
Publisher site
See Article on Publisher Site

Abstract

The inequality $$\ln {\kern 1pt} \ln \left( {r - \ln r} \right) + 1 < \mathop {\min }\limits_{0 < x \leqslant r - 1} \left( {\ln x + {x^{ - 1}}\ln \left( {r - x} \right)} \right) < \ln {\kern 1pt} \ln \left( {r - \ln \left( {r - {2^{ - 1}}\ln r} \right)} \right) + 1,$$ ln ln ( r − ln r ) + 1 < min 0 < x ≤ r − 1 ( ln x + x − 1 ln ( r − x ) ) < ln ln ( r − ln ( r − 2 − 1 ln r ) ) + 1 , where r > 2, is proved. A combinatorial optimization problem which involves the function to be minimized is described.

Journal

Mathematical NotesSpringer Journals

Published: Mar 14, 2018

There are no references for this article.