A Lexicographic 0.5-Approximation Algorithm for the Multiple Knapsack Problem

A Lexicographic 0.5-Approximation Algorithm for the Multiple Knapsack Problem We present a 0.5-approximation algorithm for the Multiple Knapsack Problem (MKP). The algorithm uses the ordering of knapsacks according to the nondecreasing of size and the two orderings of items: in nonincreasing utility order and in nonincreasing order of the utility/size ratio. These orderings create two lexicographic orderings on A × B (here A is the set of knapsacks and B is the set of indivisible items). Based on each of these lexicographic orderings, the algorithm creates a feasible solution to the MKP by looking through the pairs (a, b) ∈ A × B in the corresponding order and placing item b into knapsack a if this item is not placed yet and there is enough free space in the knapsack. The algorithm chooses the best of the two obtained solutions. This algorithm is 0.5-approximate and has runtime O(mn) (without sorting), where mand n are the sizes of A and B correspondingly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied and Industrial Mathematics Springer Journals

A Lexicographic 0.5-Approximation Algorithm for the Multiple Knapsack Problem

Loading next page...
 
/lp/springer_journal/a-lexicographic-0-5-approximation-algorithm-for-the-multiple-knapsack-QiEzFYI9y4
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Mathematics; Mathematics, general
ISSN
1990-4789
eISSN
1990-4797
D.O.I.
10.1134/S1990478918020072
Publisher site
See Article on Publisher Site

Abstract

We present a 0.5-approximation algorithm for the Multiple Knapsack Problem (MKP). The algorithm uses the ordering of knapsacks according to the nondecreasing of size and the two orderings of items: in nonincreasing utility order and in nonincreasing order of the utility/size ratio. These orderings create two lexicographic orderings on A × B (here A is the set of knapsacks and B is the set of indivisible items). Based on each of these lexicographic orderings, the algorithm creates a feasible solution to the MKP by looking through the pairs (a, b) ∈ A × B in the corresponding order and placing item b into knapsack a if this item is not placed yet and there is enough free space in the knapsack. The algorithm chooses the best of the two obtained solutions. This algorithm is 0.5-approximate and has runtime O(mn) (without sorting), where mand n are the sizes of A and B correspondingly.

Journal

Journal of Applied and Industrial MathematicsSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off