A Legendre multiwavelets approach to copula density estimation

A Legendre multiwavelets approach to copula density estimation In this paper, a novel method for copula density estimation using Legendre multiwavelet is proposed. In general, copula density estimation methods based on the multiwavelet benefit from some useful properties, including they are symmetric, orthogonal and have compact support. In particular, the Legendre multiwavelet as a more general and vector-valued polynomial type of wavelets would results a more flexible and accurate approximation for the given copula density. In addition to high ability and nice properties of Legendre multiwavelet in approximation, its support is defined on unit interval, [0,1], as copulas that are normalized to have the support on the unit square and uniform marginal. We further make this approximation method more accurate by using multiresolution techniques. The comparative study reveals that the approximation proposed in this paper is more accurate than a scalar wavelet bases approximation. We eventually apply presented method to approximate multivariate distribution using pair-copula as a flexible multivariate copula to model a dataset of Norwegian financial data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistical Papers Springer Journals

A Legendre multiwavelets approach to copula density estimation

Loading next page...
 
/lp/springer_journal/a-legendre-multiwavelets-approach-to-copula-density-estimation-hPl1A917kZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Statistics; Statistics for Business/Economics/Mathematical Finance/Insurance; Probability Theory and Stochastic Processes; Economic Theory/Quantitative Economics/Mathematical Methods; Operations Research/Decision Theory
ISSN
0932-5026
eISSN
1613-9798
D.O.I.
10.1007/s00362-015-0720-0
Publisher site
See Article on Publisher Site

Abstract

In this paper, a novel method for copula density estimation using Legendre multiwavelet is proposed. In general, copula density estimation methods based on the multiwavelet benefit from some useful properties, including they are symmetric, orthogonal and have compact support. In particular, the Legendre multiwavelet as a more general and vector-valued polynomial type of wavelets would results a more flexible and accurate approximation for the given copula density. In addition to high ability and nice properties of Legendre multiwavelet in approximation, its support is defined on unit interval, [0,1], as copulas that are normalized to have the support on the unit square and uniform marginal. We further make this approximation method more accurate by using multiresolution techniques. The comparative study reveals that the approximation proposed in this paper is more accurate than a scalar wavelet bases approximation. We eventually apply presented method to approximate multivariate distribution using pair-copula as a flexible multivariate copula to model a dataset of Norwegian financial data.

Journal

Statistical PapersSpringer Journals

Published: Nov 18, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off