A lattice approach to narrow operators

A lattice approach to narrow operators It is known that if a rearrangement invariant function space E on [0,1] has an unconditional basis then each linear continuous operator on E is a sum of two narrow operators. On the other hand, the sum of two narrow operators in L 1 is narrow. To find a general approach to these results, we extend the notion of a narrow operator to the case when the domain space is a vector lattice. Our main result asserts that the set N r (E, F) of all narrow regular operators is a band in the vector lattice L r (E, F) of all regular operators from a non-atomic order continuous Banach lattice E to an order continuous Banach lattice F. The band generated by the disjointness preserving operators is the orthogonal complement to N r (E, F) in L r (E, F). As a consequence we obtain the following generalization of the Kalton-Rosenthal theorem: every regular operator T : E → F from a non-atomic Banach lattice E to an order continuous Banach lattice F has a unique representation as T = T D + T N where T D is a sum of an order absolutely summable family of disjointness preserving operators and T N is narrow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

A lattice approach to narrow operators

Loading next page...
Copyright © 2008 by Birkhäuser Verlag Basel/Switzerland
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial