# A lattice approach to narrow operators

A lattice approach to narrow operators It is known that if a rearrangement invariant function space E on [0,1] has an unconditional basis then each linear continuous operator on E is a sum of two narrow operators. On the other hand, the sum of two narrow operators in L 1 is narrow. To find a general approach to these results, we extend the notion of a narrow operator to the case when the domain space is a vector lattice. Our main result asserts that the set N r (E, F) of all narrow regular operators is a band in the vector lattice L r (E, F) of all regular operators from a non-atomic order continuous Banach lattice E to an order continuous Banach lattice F. The band generated by the disjointness preserving operators is the orthogonal complement to N r (E, F) in L r (E, F). As a consequence we obtain the following generalization of the Kalton-Rosenthal theorem: every regular operator T : E → F from a non-atomic Banach lattice E to an order continuous Banach lattice F has a unique representation as T = T D + T N where T D is a sum of an order absolutely summable family of disjointness preserving operators and T N is narrow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

# A lattice approach to narrow operators

, Volume 13 (3) – Nov 24, 2008
37 pages

/lp/springer_journal/a-lattice-approach-to-narrow-operators-fs6aPfsV4R
Publisher
Springer Journals
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-008-2193-z
Publisher site
See Article on Publisher Site

### Abstract

It is known that if a rearrangement invariant function space E on [0,1] has an unconditional basis then each linear continuous operator on E is a sum of two narrow operators. On the other hand, the sum of two narrow operators in L 1 is narrow. To find a general approach to these results, we extend the notion of a narrow operator to the case when the domain space is a vector lattice. Our main result asserts that the set N r (E, F) of all narrow regular operators is a band in the vector lattice L r (E, F) of all regular operators from a non-atomic order continuous Banach lattice E to an order continuous Banach lattice F. The band generated by the disjointness preserving operators is the orthogonal complement to N r (E, F) in L r (E, F). As a consequence we obtain the following generalization of the Kalton-Rosenthal theorem: every regular operator T : E → F from a non-atomic Banach lattice E to an order continuous Banach lattice F has a unique representation as T = T D + T N where T D is a sum of an order absolutely summable family of disjointness preserving operators and T N is narrow.

### Journal

PositivitySpringer Journals

Published: Nov 24, 2008

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations