A latency-aware scheduling algorithm for all-optical packet switching networks with FDL buffers

A latency-aware scheduling algorithm for all-optical packet switching networks with FDL buffers Optical buffers implemented by fiber delay lines (FDLs) have a volatile nature due to signal loss and noise accumulation. Packets suffer from excessive recirculation through FDLs, and they may be dropped eventually in their routing paths. Because of this, packet scheduling becomes more difficult in FDL buffers than in RAM buffers, and requires additional design considerations for reducing packet loss. We propose a latency-aware scheduling scheme and an analytical model for all-optical packet switching networks with FDL buffers. The latency-aware scheduling scheme is intended to minimize the packet loss rate of the networks by ranking packets in the optimal balance between latency and residual distance. The analytical model is based on non-homogeneous Markovian analysis to study the effect of the proposed scheduling scheme on packet loss rate and average delay. Furthermore, our numerical results show how various network parameters affect the optimal balance. We demonstrate quantitatively how to achieve the proper balance between latency and residual distance so that the network performance can be improved significantly. For instance, we find that under a given latency limit and light traffic load our scheduling scheme achieves a packet loss rate 71% lower than a scheduling scheme that ranks packets simply based on latency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A latency-aware scheduling algorithm for all-optical packet switching networks with FDL buffers

Loading next page...
 
/lp/springer_journal/a-latency-aware-scheduling-algorithm-for-all-optical-packet-switching-Vh52ER0LL0
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0279-6
Publisher site
See Article on Publisher Site

Abstract

Optical buffers implemented by fiber delay lines (FDLs) have a volatile nature due to signal loss and noise accumulation. Packets suffer from excessive recirculation through FDLs, and they may be dropped eventually in their routing paths. Because of this, packet scheduling becomes more difficult in FDL buffers than in RAM buffers, and requires additional design considerations for reducing packet loss. We propose a latency-aware scheduling scheme and an analytical model for all-optical packet switching networks with FDL buffers. The latency-aware scheduling scheme is intended to minimize the packet loss rate of the networks by ranking packets in the optimal balance between latency and residual distance. The analytical model is based on non-homogeneous Markovian analysis to study the effect of the proposed scheduling scheme on packet loss rate and average delay. Furthermore, our numerical results show how various network parameters affect the optimal balance. We demonstrate quantitatively how to achieve the proper balance between latency and residual distance so that the network performance can be improved significantly. For instance, we find that under a given latency limit and light traffic load our scheduling scheme achieves a packet loss rate 71% lower than a scheduling scheme that ranks packets simply based on latency.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 18, 2010

References

  • Constructions of optical 2-to-1 fifo multiplexers with a limited number of recirculations
    Cheng, J.
  • On the performance of different node configurations in multi-fiber optical packet-switched networks
    Li, Y.; Xiao, G.; Ghafouri-Shiraz, H.
  • Packet prioritization in multihop latency aware scheduling for delay constrained communication
    Liang, B.; Dong, M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off