A laser flash photolysis study of amino acids and dipeptides using 4-nitroquinoline 1-oxide as a photosensitizer: The pH dependence

A laser flash photolysis study of amino acids and dipeptides using 4-nitroquinoline 1-oxide as a... The pH effects on the photochemical reaction of amino acids and related dipeptides with 4-nitroquinoline 1-oxide (4NQO) as a photosensitizer have been investigated by laser flash photolysis. The obtained kinetic parameters show that the electron transfer from Tryptophan (Trp), Tyrosine (Tyr) as well as dipeptides containing Trp and/or Tyr residue to triplet 4NQO (T4NQO) are efficient, but inefficient from methionine (Met) and dipeptides containing neither Trp nor Tyr. The result was supported by the calculated values of the free energy change from measured oxidation potentials for the electron transfer. It was demonstrated that Trp and Tyr residues are initial reaction sites with T4NQO, while Tyr/O⋅ radical may be final species for Trp-Tyr dipeptide. In acidic aqueous solutions, the self-quenching rate constants of T4NQO and the rate constants of electron transfer from amino acids to T4NQO decrease with decreasing pH. In alkaline solutions, amino acids are easily oxidized by 4NQO under irradiation of laser pulse, and no transient absorption signal was observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

A laser flash photolysis study of amino acids and dipeptides using 4-nitroquinoline 1-oxide as a photosensitizer: The pH dependence

Loading next page...
 
/lp/springer_journal/a-laser-flash-photolysis-study-of-amino-acids-and-dipeptides-using-4-E96RgaTanX
Publisher
Springer Netherlands
Copyright
Copyright © 2000 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856700X00633
Publisher site
See Article on Publisher Site

Abstract

The pH effects on the photochemical reaction of amino acids and related dipeptides with 4-nitroquinoline 1-oxide (4NQO) as a photosensitizer have been investigated by laser flash photolysis. The obtained kinetic parameters show that the electron transfer from Tryptophan (Trp), Tyrosine (Tyr) as well as dipeptides containing Trp and/or Tyr residue to triplet 4NQO (T4NQO) are efficient, but inefficient from methionine (Met) and dipeptides containing neither Trp nor Tyr. The result was supported by the calculated values of the free energy change from measured oxidation potentials for the electron transfer. It was demonstrated that Trp and Tyr residues are initial reaction sites with T4NQO, while Tyr/O⋅ radical may be final species for Trp-Tyr dipeptide. In acidic aqueous solutions, the self-quenching rate constants of T4NQO and the rate constants of electron transfer from amino acids to T4NQO decrease with decreasing pH. In alkaline solutions, amino acids are easily oxidized by 4NQO under irradiation of laser pulse, and no transient absorption signal was observed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 7, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off