Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae

A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect... Chickpea (Cicer arietinum L.) seeds contain Bowman–Birk proteinase inhibitors, which are ineffective against the digestive proteinases of larvae of the insect pest Helicoverpa armigera. We have identified and purified a low expressing proteinase inhibitor (PI), distinct from the Bowman–Birk Inhibitors and active against H. armigera gut proteinases (HGP), from chickpea seeds. N-terminal sequencing of this HGP inhibitor revealed a sequence similar to reported pea (Pisum sativum) and chickpea α-l-fucosidases and also homologous to legume Kunitz inhibitors. The identity was confirmed by matrix assisted laser desorption ionization – time of flight analysis of tryptic peptides and isolation of DNA sequence coding for the mature protein. Available sequence data showed that this protein forms a distinct phylogenetic cluster with Kunitz inhibitors from Glycine max, Medicago truncatula, P. sativum and Canavalia lineata. The isolated coding sequence was cloned into a yeast expression vector and produced as a recombinant protein in Pichia pastoris. α-l-fucosidase activity was not detectable in purified or recombinant protein, by solution assays. The recombinant protein did not inhibit chymotrypsin or subtilisin activity but did exhibit stoichiometric inhibition of trypsin, comparable to soybean Kunitz trypsin inhibitor. The recombinant protein exhibited higher inhibition of total HGP activity as compared to soybean kunitz inhibitor, even though it preferentially inhibited HGP-trypsins. H. armigera larvae fed on inhibitor-incorporated artificial diet showed significant reduction in average larval weight after 18 days of feeding demonstrating potent antimetabolic activity. The over-expression of this gene in chickpea could act as an endogenous source of resistance to H. armigera. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae

Loading next page...
 
/lp/springer_journal/a-kunitz-trypsin-inhibitor-from-chickpea-cicer-arietinum-l-that-exerts-dDWizgMitF

References (61)

Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-004-7925-2
pmid
15830127
Publisher site
See Article on Publisher Site

Abstract

Chickpea (Cicer arietinum L.) seeds contain Bowman–Birk proteinase inhibitors, which are ineffective against the digestive proteinases of larvae of the insect pest Helicoverpa armigera. We have identified and purified a low expressing proteinase inhibitor (PI), distinct from the Bowman–Birk Inhibitors and active against H. armigera gut proteinases (HGP), from chickpea seeds. N-terminal sequencing of this HGP inhibitor revealed a sequence similar to reported pea (Pisum sativum) and chickpea α-l-fucosidases and also homologous to legume Kunitz inhibitors. The identity was confirmed by matrix assisted laser desorption ionization – time of flight analysis of tryptic peptides and isolation of DNA sequence coding for the mature protein. Available sequence data showed that this protein forms a distinct phylogenetic cluster with Kunitz inhibitors from Glycine max, Medicago truncatula, P. sativum and Canavalia lineata. The isolated coding sequence was cloned into a yeast expression vector and produced as a recombinant protein in Pichia pastoris. α-l-fucosidase activity was not detectable in purified or recombinant protein, by solution assays. The recombinant protein did not inhibit chymotrypsin or subtilisin activity but did exhibit stoichiometric inhibition of trypsin, comparable to soybean Kunitz trypsin inhibitor. The recombinant protein exhibited higher inhibition of total HGP activity as compared to soybean kunitz inhibitor, even though it preferentially inhibited HGP-trypsins. H. armigera larvae fed on inhibitor-incorporated artificial diet showed significant reduction in average larval weight after 18 days of feeding demonstrating potent antimetabolic activity. The over-expression of this gene in chickpea could act as an endogenous source of resistance to H. armigera.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 20, 2004

There are no references for this article.