A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae

A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect... Chickpea (Cicer arietinum L.) seeds contain Bowman–Birk proteinase inhibitors, which are ineffective against the digestive proteinases of larvae of the insect pest Helicoverpa armigera. We have identified and purified a low expressing proteinase inhibitor (PI), distinct from the Bowman–Birk Inhibitors and active against H. armigera gut proteinases (HGP), from chickpea seeds. N-terminal sequencing of this HGP inhibitor revealed a sequence similar to reported pea (Pisum sativum) and chickpea α-l-fucosidases and also homologous to legume Kunitz inhibitors. The identity was confirmed by matrix assisted laser desorption ionization – time of flight analysis of tryptic peptides and isolation of DNA sequence coding for the mature protein. Available sequence data showed that this protein forms a distinct phylogenetic cluster with Kunitz inhibitors from Glycine max, Medicago truncatula, P. sativum and Canavalia lineata. The isolated coding sequence was cloned into a yeast expression vector and produced as a recombinant protein in Pichia pastoris. α-l-fucosidase activity was not detectable in purified or recombinant protein, by solution assays. The recombinant protein did not inhibit chymotrypsin or subtilisin activity but did exhibit stoichiometric inhibition of trypsin, comparable to soybean Kunitz trypsin inhibitor. The recombinant protein exhibited higher inhibition of total HGP activity as compared to soybean kunitz inhibitor, even though it preferentially inhibited HGP-trypsins. H. armigera larvae fed on inhibitor-incorporated artificial diet showed significant reduction in average larval weight after 18 days of feeding demonstrating potent antimetabolic activity. The over-expression of this gene in chickpea could act as an endogenous source of resistance to H. armigera. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae

Loading next page...
Kluwer Academic Publishers
Copyright © 2005 by Springer
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial