A Kinetic Model with Ordered Cytoplasmic Dissociation for SUC1, an Arabidopsis H+/Sucrose Cotransporter Expressed in Xenopus Oocytes

A Kinetic Model with Ordered Cytoplasmic Dissociation for SUC1, an Arabidopsis H+/Sucrose... To elucidate the kinetic properties of the Arabidopsis H+/sucrose cotransporter, SUC1, with respect to transmembrane voltage and ligand concentrations, the transport system was heterologously expressed in Xenopus laevis oocytes. Steady-state plasma membrane currents associated with transport of sucrose were measured with two-electrode voltage clamp over the voltage range −180 to +40 mV as a function of extracellular pH and sugar concentrations. At any given voltage, currents exhibited hyperbolic kinetics with respect to extracellular H+ and sugar concentrations, and this enabled determination of values for the maximum currents in the presence of each ligand (i H max , i S max for H+ and sucrose) and of the ligand concentrations eliciting half-maximal currents (K H m , K S m ). The i H max and i S max exhibited marked and statistically significant increases as a function of increasingly negative membrane potential. However, the K H m and K S m decreased with increasingly negative membrane potential. Furthermore, at any given voltage, i S max increased and K S m decreased as a function of the external H+ concentration. Eight six-state carrier models—which comprised the four possible permutations of intracellular and extracellular ligand binding order, each with charge translocation on the sugar-loaded or -unloaded forms of the carrier—were analyzed algebraically with respect to their competence to account for the ensemble of kinetic observations. Of these, two models (first-on, first-off and last-on, first-off with respect to sucrose binding as it passes from outside to inside the cell and with charge translocation on the loaded form of the carrier) exhibit sufficient kinetic flexibility to describe the observations. Combining these two, a single model emerges in which the binding on the external side can be random, but it can only be ordered on the inside, with the sugar dissociating before the proton. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Kinetic Model with Ordered Cytoplasmic Dissociation for SUC1, an Arabidopsis H+/Sucrose Cotransporter Expressed in Xenopus Oocytes

Loading next page...
 
/lp/springer_journal/a-kinetic-model-with-ordered-cytoplasmic-dissociation-for-suc1-an-krJLTodkJ9
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900275
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial