A kilohertz frame rate cinemagraphic PIV system for laboratory-scale turbulent and unsteady flows

A kilohertz frame rate cinemagraphic PIV system for laboratory-scale turbulent and unsteady flows A kilohertz frame rate cinemagraphic particle image velocimetry (PIV) system has been developed for acquiring time-resolved image sequences of laboratory-scale gas and liquid-phase turbulent flows. Up to 8000 instantaneous PIV images per second are obtained, with sequence lengths exceeding 4000 images. The two-frame cross-correlation method employed precludes directional ambiguity and has a higher signal-to-noise ratio than single-frame autocorrelation or cross-correlation methods, facilitating acquisition of long uninterrupted sequences of valid PIV images. Low and high velocities can be measured simultaneously with similar accuracy by adaptively cross-correlating images with the appropriate time delay. Seed particle illumination is provided by two frequency-doubled Nd:YAG lasers producing Q-switched pulses at the camera frame rate. PIV images are acquired using a 16 mm high-speed rotating prism camera. Frame-to-frame registration is accomplished by imaging two pairs of crossed lines onto each frame and aligning the digitized image sequence to these markers using image processing algorithms. No flow disturbance is created by the markers because only their image is projected to the PIV imaging plane, with the physical projection device residing outside the flow field. The frame-to-frame alignment uncertainty contributes 2% to the overall velocity measurement uncertainty, which is otherwise comparable to similar film-based PIV methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A kilohertz frame rate cinemagraphic PIV system for laboratory-scale turbulent and unsteady flows

Loading next page...
 
/lp/springer_journal/a-kilohertz-frame-rate-cinemagraphic-piv-system-for-laboratory-scale-SvzdKXwMxT
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480200009
Publisher site
See Article on Publisher Site

Abstract

A kilohertz frame rate cinemagraphic particle image velocimetry (PIV) system has been developed for acquiring time-resolved image sequences of laboratory-scale gas and liquid-phase turbulent flows. Up to 8000 instantaneous PIV images per second are obtained, with sequence lengths exceeding 4000 images. The two-frame cross-correlation method employed precludes directional ambiguity and has a higher signal-to-noise ratio than single-frame autocorrelation or cross-correlation methods, facilitating acquisition of long uninterrupted sequences of valid PIV images. Low and high velocities can be measured simultaneously with similar accuracy by adaptively cross-correlating images with the appropriate time delay. Seed particle illumination is provided by two frequency-doubled Nd:YAG lasers producing Q-switched pulses at the camera frame rate. PIV images are acquired using a 16 mm high-speed rotating prism camera. Frame-to-frame registration is accomplished by imaging two pairs of crossed lines onto each frame and aligning the digitized image sequence to these markers using image processing algorithms. No flow disturbance is created by the markers because only their image is projected to the PIV imaging plane, with the physical projection device residing outside the flow field. The frame-to-frame alignment uncertainty contributes 2% to the overall velocity measurement uncertainty, which is otherwise comparable to similar film-based PIV methods.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off