A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis

A kidney-specific genome-scale metabolic network model for analyzing focal segmental... Focal Segmental Glomerulosclerosis (FSGS) is a type of nephrotic syndrome which accounts for 20 and 40 % of such cases in children and adults, respectively. The high prevalence of FSGS makes it the most common primary glomerular disorder causing end-stage renal disease. Although the pathogenesis of this disorder has been widely investigated, the exact mechanism underlying this disease is still to be discovered. Current therapies seek to stop the progression of FSGS and often fail to cure the patients since progression to end-stage renal failure is usually inevitable. In the present work, we use a kidney-specific metabolic network model to study FSGS. The model was obtained by merging two previously published kidney-specific metabolic network models. The validity of the new model was checked by comparing the inactivating reaction genes identified in silico to the list of kidney disease implicated genes. To model the disease state, we used a complete list of FSGS metabolic biomarkers extracted from transcriptome and proteome profiling of patients as well as genetic deficiencies known to cause FSGS. We observed that some specific pathways including chondroitin sulfate degradation, eicosanoid metabolism, keratan sulfate biosynthesis, vitamin B6 metabolism, and amino acid metabolism tend to show variations in FSGS model compared to healthy kidney. Furthermore, we computationally searched for the potential drug targets that can revert the diseased metabolic state to the healthy state. Interestingly, only one drug target, N-acetylgalactosaminidase, was found whose inhibition could alter cellular metabolism towards healthy state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis

Loading next page...
 
/lp/springer_journal/a-kidney-specific-genome-scale-metabolic-network-model-for-analyzing-1Uz00lDNmN
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-016-9622-2
Publisher site
See Article on Publisher Site

Abstract

Focal Segmental Glomerulosclerosis (FSGS) is a type of nephrotic syndrome which accounts for 20 and 40 % of such cases in children and adults, respectively. The high prevalence of FSGS makes it the most common primary glomerular disorder causing end-stage renal disease. Although the pathogenesis of this disorder has been widely investigated, the exact mechanism underlying this disease is still to be discovered. Current therapies seek to stop the progression of FSGS and often fail to cure the patients since progression to end-stage renal failure is usually inevitable. In the present work, we use a kidney-specific metabolic network model to study FSGS. The model was obtained by merging two previously published kidney-specific metabolic network models. The validity of the new model was checked by comparing the inactivating reaction genes identified in silico to the list of kidney disease implicated genes. To model the disease state, we used a complete list of FSGS metabolic biomarkers extracted from transcriptome and proteome profiling of patients as well as genetic deficiencies known to cause FSGS. We observed that some specific pathways including chondroitin sulfate degradation, eicosanoid metabolism, keratan sulfate biosynthesis, vitamin B6 metabolism, and amino acid metabolism tend to show variations in FSGS model compared to healthy kidney. Furthermore, we computationally searched for the potential drug targets that can revert the diseased metabolic state to the healthy state. Interestingly, only one drug target, N-acetylgalactosaminidase, was found whose inhibition could alter cellular metabolism towards healthy state.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off