A hybrid protection strategy based on node-disjointness against double failures in optical mesh networks

A hybrid protection strategy based on node-disjointness against double failures in optical mesh... As the size and the complexity of optical mesh networks are continuing to grow and the severe natural disasters are occurring more frequently in recent years, multiple failures (link failures or node failures) become increasing probable. Protection strategies against these failures generally provision backup paths for working paths based on link-disjointness or node-disjointness. Compared with link-disjoint protection, node-disjoint protection means higher degree of risk isolation and can accommodate both link failures and node failures. This motivates us to propose a hybrid node-disjoint protection, named Segment and Path Shared Protection (SPSP), to provide 100% protection against arbitrary simultaneous double-node failures (the worst double-failure case). For each service connection request, SPSP first provisions backup segments for the working segments, respectively, as the primary backup resources, then provisions a single backup path for the whole working path as the second backup resource. In addition to its complete protection capability and flexible scalability for double failures, SPSP can also obtain better network load balance and resource sharing degree by dynamic link-cost adjustment and reserved backup resource sharing. Simulation results show that SPSP can achieve a shorter average recovery time than path shared protection (PSP) and higher resource utilization and lower blocking probability than segment shared protection (SSP). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A hybrid protection strategy based on node-disjointness against double failures in optical mesh networks

Loading next page...
Springer US
Copyright © 2011 by Springer Science+Business Media, LLC
Computer Science; Electrical Engineering; Computer Communication Networks; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial