Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A hybrid multi-objective evolutionary algorithm with feedback mechanism

A hybrid multi-objective evolutionary algorithm with feedback mechanism Exploration and exploitation are two cornerstones for multi-objective evolutionary algorithms (MOEAs). To balance exploration and exploitation, we propose an efficient hybrid MOEA (i.e., MOHGD) by integrating multiple techniques and feedback mechanism. Multiple techniques include harmony search, genetic operator and differential evolution, which can improve the search diversity. Whereas hybrid selection mechanism contributes to the search efficiency by integrating the advantages of the static and adaptive selection scheme. Therefore, multiple techniques based on the hybrid selection strategy can effectively enhance the exploration ability of the MOHGD. Besides, we propose a feedback strategy to transfer some non-dominated solutions from the external archive to the parent population. This feedback strategy can strengthen convergence toward Pareto optimal solutions and improve the exploitation ability of the MOHGD. The proposed MOHGD has been evaluated on benchmarks against other state of the art MOEAs in terms of convergence, spread, coverage, and convergence speed. Computational results show that the proposed MOHGD is competitive or superior to other MOEAs considered in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

A hybrid multi-objective evolutionary algorithm with feedback mechanism

Applied Intelligence , Volume 48 (11) – May 30, 2018

Loading next page...
 
/lp/springer_journal/a-hybrid-multi-objective-evolutionary-algorithm-with-feedback-rp566900gE
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
DOI
10.1007/s10489-018-1211-5
Publisher site
See Article on Publisher Site

Abstract

Exploration and exploitation are two cornerstones for multi-objective evolutionary algorithms (MOEAs). To balance exploration and exploitation, we propose an efficient hybrid MOEA (i.e., MOHGD) by integrating multiple techniques and feedback mechanism. Multiple techniques include harmony search, genetic operator and differential evolution, which can improve the search diversity. Whereas hybrid selection mechanism contributes to the search efficiency by integrating the advantages of the static and adaptive selection scheme. Therefore, multiple techniques based on the hybrid selection strategy can effectively enhance the exploration ability of the MOHGD. Besides, we propose a feedback strategy to transfer some non-dominated solutions from the external archive to the parent population. This feedback strategy can strengthen convergence toward Pareto optimal solutions and improve the exploitation ability of the MOHGD. The proposed MOHGD has been evaluated on benchmarks against other state of the art MOEAs in terms of convergence, spread, coverage, and convergence speed. Computational results show that the proposed MOHGD is competitive or superior to other MOEAs considered in this paper.

Journal

Applied IntelligenceSpringer Journals

Published: May 30, 2018

References