A hybrid multi-objective evolutionary algorithm with feedback mechanism

A hybrid multi-objective evolutionary algorithm with feedback mechanism Exploration and exploitation are two cornerstones for multi-objective evolutionary algorithms (MOEAs). To balance exploration and exploitation, we propose an efficient hybrid MOEA (i.e., MOHGD) by integrating multiple techniques and feedback mechanism. Multiple techniques include harmony search, genetic operator and differential evolution, which can improve the search diversity. Whereas hybrid selection mechanism contributes to the search efficiency by integrating the advantages of the static and adaptive selection scheme. Therefore, multiple techniques based on the hybrid selection strategy can effectively enhance the exploration ability of the MOHGD. Besides, we propose a feedback strategy to transfer some non-dominated solutions from the external archive to the parent population. This feedback strategy can strengthen convergence toward Pareto optimal solutions and improve the exploitation ability of the MOHGD. The proposed MOHGD has been evaluated on benchmarks against other state of the art MOEAs in terms of convergence, spread, coverage, and convergence speed. Computational results show that the proposed MOHGD is competitive or superior to other MOEAs considered in this paper. Keywords Differential evolution · Feedback mechanism · Harmony search · Hybrid selection mechanism · Multi-objective evolutionary algorithm 1 Introduction scheduling [1–3], network systems [4], and manufacturing industry [5]. Therefore, it is highly important to develop http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

A hybrid multi-objective evolutionary algorithm with feedback mechanism

Loading next page...
 
/lp/springer_journal/a-hybrid-multi-objective-evolutionary-algorithm-with-feedback-rp566900gE
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-018-1211-5
Publisher site
See Article on Publisher Site

Abstract

Exploration and exploitation are two cornerstones for multi-objective evolutionary algorithms (MOEAs). To balance exploration and exploitation, we propose an efficient hybrid MOEA (i.e., MOHGD) by integrating multiple techniques and feedback mechanism. Multiple techniques include harmony search, genetic operator and differential evolution, which can improve the search diversity. Whereas hybrid selection mechanism contributes to the search efficiency by integrating the advantages of the static and adaptive selection scheme. Therefore, multiple techniques based on the hybrid selection strategy can effectively enhance the exploration ability of the MOHGD. Besides, we propose a feedback strategy to transfer some non-dominated solutions from the external archive to the parent population. This feedback strategy can strengthen convergence toward Pareto optimal solutions and improve the exploitation ability of the MOHGD. The proposed MOHGD has been evaluated on benchmarks against other state of the art MOEAs in terms of convergence, spread, coverage, and convergence speed. Computational results show that the proposed MOHGD is competitive or superior to other MOEAs considered in this paper. Keywords Differential evolution · Feedback mechanism · Harmony search · Hybrid selection mechanism · Multi-objective evolutionary algorithm 1 Introduction scheduling [1–3], network systems [4], and manufacturing industry [5]. Therefore, it is highly important to develop

Journal

Applied IntelligenceSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off