A hybrid method for bubble geometry reconstruction in two-phase microchannels

A hybrid method for bubble geometry reconstruction in two-phase microchannels Understanding bubble dynamics is critical to the design and optimization of two-phase microchannel heat sinks. This paper presents a hybrid experimental and computational methodology that reconstructs the three-dimensional bubble geometry, as well as provides other critical information associated with nucleating bubbles in microchannels. Rectangular cross-section silicon microchannels with hydraulic diameters less than 200 μm were fabricated with integrated heaters for the flow experiments, and the working liquid used was water. Bubbles formed via heterogeneous nucleation and were observed to grow from the silicon side walls of the channels. Two-dimensional images and two-component liquid velocity field measurements during bubble growth were obtained using micron-resolution particle image velocimetry (μPIV). These measurements were combined with iterative three-dimensional numerical simulations using finite element software, FEMLAB. The three-dimensional shape and location of the bubble were quantified by identifying the geometry that provided the best match between the computed flow field and the μPIV data. The reconstructed flow field through this process reproduced the experimental data within an error of 10–20%. Other important information such as contact angles and bubble growth rates can also be estimated from this methodology. This work is an important step toward understanding the physical mechanisms behind bubble growth and departure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A hybrid method for bubble geometry reconstruction in two-phase microchannels

Loading next page...
Copyright © 2006 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial