A hybrid cycle bandwidth allocation scheme with differentiated services support in Ethernet passive optical networks

A hybrid cycle bandwidth allocation scheme with differentiated services support in Ethernet... The Ethernet passive optical network (EPON) has emerged as one of the most promising solutions for next generation broadband access networks. Designing an efficient upstream bandwidth allocation scheme with differentiated services (DiffServ) support is a crucial issue for the successful deployment of EPON, carrying heterogeneous traffic with diverse quality of service (QoS) requirements. In this article, we propose a new hybrid cycle scheme (HCS) for bandwidth allocation with DiffServ support. In this scheme, the high-priority traffic is transmitted in fixed timeslots at fixed positions in a cycle while the medium- and low-priority traffic are transmitted in variable timeslots in an adaptive dynamic cycle. A suitable local buffer management scheme is also proposed to facilitate QoS implementation. We develop a novel feature providing potentially multiple transmission opportunities (M-opportunities) per-cycle for high-priority traffic. This feature is significant in improving delay and delay-variation performance. The HCS provides guaranteed services in a short-cycle scale for delay and jitter sensitive traffic while offering guaranteed throughput in a moderately long-time scale for bandwidth sensitive traffic and at the same time maximizing throughput for non-QoS demanding best-effort traffic. We develop analytical performance analysis on the deterministic delay bound for high-priority traffic and minimum throughput guarantees for both high- and medium-priority traffic. On the other hand, we also conduct detailed simulation experiments. The results show a close agreement between analytical approach and simulation. In addition, the simulation results show that the HCS scheme is able to provide excellent performance in terms of average delay, delay-variation, and throughput as compared with previous approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A hybrid cycle bandwidth allocation scheme with differentiated services support in Ethernet passive optical networks

Loading next page...
 
/lp/springer_journal/a-hybrid-cycle-bandwidth-allocation-scheme-with-differentiated-Yl05NnD0ZM
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-007-0097-7
Publisher site
See Article on Publisher Site

Abstract

The Ethernet passive optical network (EPON) has emerged as one of the most promising solutions for next generation broadband access networks. Designing an efficient upstream bandwidth allocation scheme with differentiated services (DiffServ) support is a crucial issue for the successful deployment of EPON, carrying heterogeneous traffic with diverse quality of service (QoS) requirements. In this article, we propose a new hybrid cycle scheme (HCS) for bandwidth allocation with DiffServ support. In this scheme, the high-priority traffic is transmitted in fixed timeslots at fixed positions in a cycle while the medium- and low-priority traffic are transmitted in variable timeslots in an adaptive dynamic cycle. A suitable local buffer management scheme is also proposed to facilitate QoS implementation. We develop a novel feature providing potentially multiple transmission opportunities (M-opportunities) per-cycle for high-priority traffic. This feature is significant in improving delay and delay-variation performance. The HCS provides guaranteed services in a short-cycle scale for delay and jitter sensitive traffic while offering guaranteed throughput in a moderately long-time scale for bandwidth sensitive traffic and at the same time maximizing throughput for non-QoS demanding best-effort traffic. We develop analytical performance analysis on the deterministic delay bound for high-priority traffic and minimum throughput guarantees for both high- and medium-priority traffic. On the other hand, we also conduct detailed simulation experiments. The results show a close agreement between analytical approach and simulation. In addition, the simulation results show that the HCS scheme is able to provide excellent performance in terms of average delay, delay-variation, and throughput as compared with previous approaches.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 29, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off