A history of genome editing in mammals

A history of genome editing in mammals Genome editing is now a routine procedure in many mammalian genetics laboratories. The ostensibly short but intense history of genome-editing approaches illustrates how a disruptive technology can universally colonize a field when this new methodology, conceived to alter mammalian genomes at specific locations, is found to efficiently and robustly deliver results. This review summarizes the early development of genome editing using nucleases, from the pioneering experiments using yeast meganucleases, to the latest prokaryotic nucleases used for precise genome manipulation. Gene-editing nucleases belong to one of three known categories: zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) tools. All operate on the same principle; they are all capable of inducing a double-strand break (DSB) at a defined genomic sequence that is subsequently corrected by endogenous DNA repair mechanisms. DSBs can be repaired through non-homologous end joining (NHEJ), resulting in small insertions and/or deletions (INDELs) and, hence, often leading to gene disruption. Alternatively, DSBs can be repaired through homology-driven repair (HDR), in the presence of donor homologous DNA sequences, resulting in gene-editing events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A history of genome editing in mammals

Loading next page...
 
/lp/springer_journal/a-history-of-genome-editing-in-mammals-0W9hBjEKOt
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-017-9699-2
Publisher site
See Article on Publisher Site

Abstract

Genome editing is now a routine procedure in many mammalian genetics laboratories. The ostensibly short but intense history of genome-editing approaches illustrates how a disruptive technology can universally colonize a field when this new methodology, conceived to alter mammalian genomes at specific locations, is found to efficiently and robustly deliver results. This review summarizes the early development of genome editing using nucleases, from the pioneering experiments using yeast meganucleases, to the latest prokaryotic nucleases used for precise genome manipulation. Gene-editing nucleases belong to one of three known categories: zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) tools. All operate on the same principle; they are all capable of inducing a double-strand break (DSB) at a defined genomic sequence that is subsequently corrected by endogenous DNA repair mechanisms. DSBs can be repaired through non-homologous end joining (NHEJ), resulting in small insertions and/or deletions (INDELs) and, hence, often leading to gene disruption. Alternatively, DSBs can be repaired through homology-driven repair (HDR), in the presence of donor homologous DNA sequences, resulting in gene-editing events.

Journal

Mammalian GenomeSpringer Journals

Published: Jun 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off