A high-throughput energy-efficient passive optical datacenter network

A high-throughput energy-efficient passive optical datacenter network Datacenter applications impose heavy demands on bandwidth and also generate a variety of communication patterns (unicast, multicast, incast, and broadcast). Supporting such traffic demands leads to networks built with exorbitant facility costs and formidable power consumption if conventional design is followed. In this paper, we propose a novel high-throughput datacenter network that leverages passive optical technologies to efficiently support communications with mixed traffic patterns. Our network enables a dynamic traffic allocation that caters to diverse communication patterns at low power consumption. Specifically, our proposed network consists of two optical planes, each optimized for specific traffic patterns. We compare the proposed network with its optical and electronic counterparts and highlight its potential benefits in terms of facility costs and power consumption reductions. To avoid frame collisions, a high-efficiency distributed protocol is designed to dynamically distribute traffic between the two optical planes. Moreover, we formulate the scheduling process as a mixed integer programming problem and design three greedy heuristic algorithms. Finally, simulation results show that our proposed scheme outperforms the previous POXN architecture in terms of throughput and mean packet delay. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A high-throughput energy-efficient passive optical datacenter network

Loading next page...
 
/lp/springer_journal/a-high-throughput-energy-efficient-passive-optical-datacenter-network-79Prnsakrf
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-016-0651-2
Publisher site
See Article on Publisher Site

Abstract

Datacenter applications impose heavy demands on bandwidth and also generate a variety of communication patterns (unicast, multicast, incast, and broadcast). Supporting such traffic demands leads to networks built with exorbitant facility costs and formidable power consumption if conventional design is followed. In this paper, we propose a novel high-throughput datacenter network that leverages passive optical technologies to efficiently support communications with mixed traffic patterns. Our network enables a dynamic traffic allocation that caters to diverse communication patterns at low power consumption. Specifically, our proposed network consists of two optical planes, each optimized for specific traffic patterns. We compare the proposed network with its optical and electronic counterparts and highlight its potential benefits in terms of facility costs and power consumption reductions. To avoid frame collisions, a high-efficiency distributed protocol is designed to dynamically distribute traffic between the two optical planes. Moreover, we formulate the scheduling process as a mixed integer programming problem and design three greedy heuristic algorithms. Finally, simulation results show that our proposed scheme outperforms the previous POXN architecture in terms of throughput and mean packet delay.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 25, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off