A high-performance message prioritization and scheduling protocol for WDM star networks

A high-performance message prioritization and scheduling protocol for WDM star networks A high-performance Efficient Message Prioritization and Scheduling (EMPS) protocol, for intelligent message scheduling in Wavelength-Division Multiplexing (WDM) star networks is introduced. The performance of the well-known EATS and MSL schemes is noticeably degraded in practical networks with non-uniform destinations and non-negligible transceiver tuning latencies. Under these realistic conditions, it is common that two or more messages with the same destination have to be scheduled consecutively or at close times. In most cases, this brings about some performance penalty, owing to the delayed availability of the destination’s receiver for the second (and beyond) of the consecutive messages. As the frequency of such occurrences increases, the performance degradation of the existing schemes becomes more prominent. EMPS is proposed to deal with this problem. It simultaneously considers multiple messages from different transmitting nodes and gives priority to messages intended for the least used destinations each time. By balancing the offered load in this way, EMPS minimizes the probability of having to schedule two or more messages with the same destination consecutively or at close times. Additionally, by incorporating the Minimum Scheduling Latency algorithm for channel selection, the protocol also minimizes the actual performance penalty incurred, when scheduling of consecutive messages with the same destination cannot be avoided. Extensive simulations are carried out in order to study the performance of EMPS and compare it to other efficient schemes under various conditions. The simulation results show that the proposed protocol always brings about a significant performance improvement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A high-performance message prioritization and scheduling protocol for WDM star networks

Loading next page...
 
/lp/springer_journal/a-high-performance-message-prioritization-and-scheduling-protocol-for-4IDscjbCr4
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-007-0067-0
Publisher site
See Article on Publisher Site

Abstract

A high-performance Efficient Message Prioritization and Scheduling (EMPS) protocol, for intelligent message scheduling in Wavelength-Division Multiplexing (WDM) star networks is introduced. The performance of the well-known EATS and MSL schemes is noticeably degraded in practical networks with non-uniform destinations and non-negligible transceiver tuning latencies. Under these realistic conditions, it is common that two or more messages with the same destination have to be scheduled consecutively or at close times. In most cases, this brings about some performance penalty, owing to the delayed availability of the destination’s receiver for the second (and beyond) of the consecutive messages. As the frequency of such occurrences increases, the performance degradation of the existing schemes becomes more prominent. EMPS is proposed to deal with this problem. It simultaneously considers multiple messages from different transmitting nodes and gives priority to messages intended for the least used destinations each time. By balancing the offered load in this way, EMPS minimizes the probability of having to schedule two or more messages with the same destination consecutively or at close times. Additionally, by incorporating the Minimum Scheduling Latency algorithm for channel selection, the protocol also minimizes the actual performance penalty incurred, when scheduling of consecutive messages with the same destination cannot be avoided. Extensive simulations are carried out in order to study the performance of EMPS and compare it to other efficient schemes under various conditions. The simulation results show that the proposed protocol always brings about a significant performance improvement.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 17, 2007

References

  • The receiver collision avoidance (RCA) protocol for a single-hop WDM lightwave network
    Jia, F.; Mukherjee, B.
  • Adaptive protocols for optical LANs with bursty and correlated traffic
    Papadimitriou, G.I.; Obaidat, M.S.; Pomportsis, A.S.
  • Wavelength-conversion-based protocols for single-hop photonic networks with bursty traffic
    Papadimitriou, G.I.; Pomportsis, A.S.
  • An interval-based scheduling algorithm for optical WDM star networks
    Sivalingam, K.M.; Wang, J.; Wu, J.; Mishra, M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off