A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements

A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements There are a variety of phenomena which may impact the accuracy of wide-band thermochromic liquid crystal temperature measurements, including: irregularities in liquid crystal and black paint layers, reflective components from light sources, and variations in the lighting/viewing angle across the surface. A wide-band calibration technique has been developed which inherently accounts for these and other sources of uncertainty by employing a point-wise calibration of the entire test surface. Both on and off-axis lighting arrangements are assessed for ease of implementation and accuracy of color displayed under uniform temperature conditions. The technique employs a series of uniform-temperature images to construct calibration curves relating the local hue component to temperature in a point-wise manner for the entire test surface. An off-axis lighting/viewing arrangement is found to be most practical for typical experimental setups. Hysteresis effects are quantified for excursions beyond both the lower and upper clearing point of the liquid crystals. Finally, the total uncertainty of the measured temperature is determined to vary from ±1.2% to ±7.2% across the bandwidth of the liquid crystals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements

Loading next page...
 
/lp/springer_journal/a-high-accuracy-calibration-technique-for-thermochromic-liquid-crystal-xT6oh2oK9G
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050411
Publisher site
See Article on Publisher Site

Abstract

There are a variety of phenomena which may impact the accuracy of wide-band thermochromic liquid crystal temperature measurements, including: irregularities in liquid crystal and black paint layers, reflective components from light sources, and variations in the lighting/viewing angle across the surface. A wide-band calibration technique has been developed which inherently accounts for these and other sources of uncertainty by employing a point-wise calibration of the entire test surface. Both on and off-axis lighting arrangements are assessed for ease of implementation and accuracy of color displayed under uniform temperature conditions. The technique employs a series of uniform-temperature images to construct calibration curves relating the local hue component to temperature in a point-wise manner for the entire test surface. An off-axis lighting/viewing arrangement is found to be most practical for typical experimental setups. Hysteresis effects are quantified for excursions beyond both the lower and upper clearing point of the liquid crystals. Finally, the total uncertainty of the measured temperature is determined to vary from ±1.2% to ±7.2% across the bandwidth of the liquid crystals.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 6, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off