A habitat suitability analysis at multi-spatial scale of two sympatric flying fox species reveals the urgent need for conservation action

A habitat suitability analysis at multi-spatial scale of two sympatric flying fox species reveals... In this study we used a multi-spatial scale approach to investigate habitat suitability, roosting characteristics, and ecological niche in two flying fox species on the Comoros Islands—Pteropus livingstonii and Pteropus seychellensis comorensis. At a broad scale, we assessed the ecological niche and habitat suitability for both species using the Species Distribution Modeling method based on the recent ensembles of small models (ESM) approach. At a fine scale, Ecological Niche Factor Analysis (ENFA) was applied to assess habitat selection by each species. Direct observation was used at each roost to estimate the total number of individuals and to identify the roost characteristics. At both broad and fine scales, the analyses highlighted clear niche partitioning by the two species. We found that P. livingstonii has a very limited distribution, restricted to steep, high-elevation slopes of the islands’ remaining natural forests, and the patterns were the same for roosting, foraging sites and the entire habitat. By contrast, P. s. comorensis has a relatively large geographic range that extends over low-elevation farmlands and villages and it was negatively correlated to natural forest across the entire area and all roosting sites, but its foraging areas were positively correlated to natural forest and high elevation areas. Both species selected large, tall trees for roosting. The total number of individuals in the studied area was estimated to be 1243 P. livingstonii and 11,898 P. s. comorensis. The results of our study demonstrated that these two species use different habitat types and ensure different ecosystem services in pollination and seed dispersion and thus are both critical for maintaining overall ecosystem dynamics. However, the currently high level of hunting pressure and roost disturbance makes them vulnerable to extinction. To ensure the viability of both species, conservation measures need to be taken by the Comoros government. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biodiversity and Conservation Springer Journals

A habitat suitability analysis at multi-spatial scale of two sympatric flying fox species reveals the urgent need for conservation action

Loading next page...
 
/lp/springer_journal/a-habitat-suitability-analysis-at-multi-spatial-scale-of-two-sympatric-znUc5JJ0WP
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Biodiversity; Ecology; Conservation Biology/Ecology; Climate Change/Climate Change Impacts
ISSN
0960-3115
eISSN
1572-9710
D.O.I.
10.1007/s10531-018-1544-8
Publisher site
See Article on Publisher Site

Abstract

In this study we used a multi-spatial scale approach to investigate habitat suitability, roosting characteristics, and ecological niche in two flying fox species on the Comoros Islands—Pteropus livingstonii and Pteropus seychellensis comorensis. At a broad scale, we assessed the ecological niche and habitat suitability for both species using the Species Distribution Modeling method based on the recent ensembles of small models (ESM) approach. At a fine scale, Ecological Niche Factor Analysis (ENFA) was applied to assess habitat selection by each species. Direct observation was used at each roost to estimate the total number of individuals and to identify the roost characteristics. At both broad and fine scales, the analyses highlighted clear niche partitioning by the two species. We found that P. livingstonii has a very limited distribution, restricted to steep, high-elevation slopes of the islands’ remaining natural forests, and the patterns were the same for roosting, foraging sites and the entire habitat. By contrast, P. s. comorensis has a relatively large geographic range that extends over low-elevation farmlands and villages and it was negatively correlated to natural forest across the entire area and all roosting sites, but its foraging areas were positively correlated to natural forest and high elevation areas. Both species selected large, tall trees for roosting. The total number of individuals in the studied area was estimated to be 1243 P. livingstonii and 11,898 P. s. comorensis. The results of our study demonstrated that these two species use different habitat types and ensure different ecosystem services in pollination and seed dispersion and thus are both critical for maintaining overall ecosystem dynamics. However, the currently high level of hunting pressure and roost disturbance makes them vulnerable to extinction. To ensure the viability of both species, conservation measures need to be taken by the Comoros government.

Journal

Biodiversity and ConservationSpringer Journals

Published: Apr 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off