A GWA study reveals genetic loci for body conformation traits in Chinese Laiwu pigs and its implications for human BMI

A GWA study reveals genetic loci for body conformation traits in Chinese Laiwu pigs and its... Pigs share numerous physiological and phenotypic similarities with human and thus have been considered as a good model in nonrodent mammals for the study of genetic basis of human obesity. Researches on candidate genes for obesity traits have successfully identified some common genes between humans and pigs. However, few studies have assessed how many similarities exist between the genetic architecture of obesity in pigs and humans by large-scale comparative genomics. Here, we performed a genome-wide association study (GWAS) using the porcine 60 K SNP Beadchip for BMI and other four conformation traits at three different ages in a Chinese Laiwu pig population, which shows a large variability in fat deposition. In total, 35 SNPs were found to be significant at Bonferroni-corrected 5 % chromosome-wise level (P = 2.13 × 10−5) and 88 SNPs had suggestive (P < 10−4) association with the conformation traits. Some SNPs showed age-dependent association. Intriguingly, out of 32 regions associated with BMI in pigs, 18 were homologous with the loci for BMI in humans. Furthermore, five closest genes to GWAS peaks including HIF1AN, SMYD3, COX10, SLMAP, and GBE1 have been already associated with BMI in humans, which makes them very promising candidates for these QTLs. The result of GO analysis provided strong support to the fact that mitochondria and synapse play important roles in obesity susceptibility, which is consistent with previous findings on human obesity, and it also implicated new gene sets related to chromatin modification and Ig-like C2-type 5 domain. Therefore, these results not only provide new insights into the genetic architecture of BMI in pigs but also highlight that humans and pigs share the significant overlap of obesity-related genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A GWA study reveals genetic loci for body conformation traits in Chinese Laiwu pigs and its implications for human BMI

Loading next page...
 
/lp/springer_journal/a-gwa-study-reveals-genetic-loci-for-body-conformation-traits-in-iXmVICstcR
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-016-9657-4
Publisher site
See Article on Publisher Site

Abstract

Pigs share numerous physiological and phenotypic similarities with human and thus have been considered as a good model in nonrodent mammals for the study of genetic basis of human obesity. Researches on candidate genes for obesity traits have successfully identified some common genes between humans and pigs. However, few studies have assessed how many similarities exist between the genetic architecture of obesity in pigs and humans by large-scale comparative genomics. Here, we performed a genome-wide association study (GWAS) using the porcine 60 K SNP Beadchip for BMI and other four conformation traits at three different ages in a Chinese Laiwu pig population, which shows a large variability in fat deposition. In total, 35 SNPs were found to be significant at Bonferroni-corrected 5 % chromosome-wise level (P = 2.13 × 10−5) and 88 SNPs had suggestive (P < 10−4) association with the conformation traits. Some SNPs showed age-dependent association. Intriguingly, out of 32 regions associated with BMI in pigs, 18 were homologous with the loci for BMI in humans. Furthermore, five closest genes to GWAS peaks including HIF1AN, SMYD3, COX10, SLMAP, and GBE1 have been already associated with BMI in humans, which makes them very promising candidates for these QTLs. The result of GO analysis provided strong support to the fact that mitochondria and synapse play important roles in obesity susceptibility, which is consistent with previous findings on human obesity, and it also implicated new gene sets related to chromatin modification and Ig-like C2-type 5 domain. Therefore, these results not only provide new insights into the genetic architecture of BMI in pigs but also highlight that humans and pigs share the significant overlap of obesity-related genes.

Journal

Mammalian GenomeSpringer Journals

Published: Jul 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off