A graph-theoretic model for optimizing queries involving methods

A graph-theoretic model for optimizing queries involving methods Traditional algorithms for optimizing the execution order of joins are no more valid when selections and projections involve methods and become very expensive operations. Selections and projections could be even more costly than joins such that they are pulled above joins, rather than pushed down in a query tree. In this paper, we take a fundamental look at how to approach query optimization from a top-down design perspective, rather than trying to force one model to fit into another. We present a graph model which is designed to characterize execution plans. Each edge and each vertex of the graph is assigned a weight to model execution plans. We also design algorithms that use these weights to optimize the execution order of operations. A cost model of these algorithms is developed. Experiments are conducted on the basis of this cost model. The results show that our algorithms are superior to similar work proposed in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A graph-theoretic model for optimizing queries involving methods

Loading next page...
 
/lp/springer_journal/a-graph-theoretic-model-for-optimizing-queries-involving-methods-53gQzUHUzd
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780100035
Publisher site
See Article on Publisher Site

Abstract

Traditional algorithms for optimizing the execution order of joins are no more valid when selections and projections involve methods and become very expensive operations. Selections and projections could be even more costly than joins such that they are pulled above joins, rather than pushed down in a query tree. In this paper, we take a fundamental look at how to approach query optimization from a top-down design perspective, rather than trying to force one model to fit into another. We present a graph model which is designed to characterize execution plans. Each edge and each vertex of the graph is assigned a weight to model execution plans. We also design algorithms that use these weights to optimize the execution order of operations. A cost model of these algorithms is developed. Experiments are conducted on the basis of this cost model. The results show that our algorithms are superior to similar work proposed in the literature.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off