A graph exploration method for identifying influential spreaders in complex networks

A graph exploration method for identifying influential spreaders in complex networks The problem of identifying the influential spreaders - the important nodes - in a real world network is of high importance due to its theoretical interest as well as its practical applications, such as the acceleration of information diffusion, the control of the spread of a disease and the improvement of the resilience of networks to external attacks. In this paper, we propose a graph exploration sampling method that accurately identifies the influential spreaders in a complex network, without any prior knowledge of the original graph, apart from the collected samples/subgraphs. The method explores the graph, following a deterministic selection rule and outputs a graph sample - the set of edges that have been crossed. The proposed method is based on a version of Rank Degree graph sampling algorithm. We conduct extensive experiments in eight real world networks by simulating the susceptible-infected-recovered (SIR) and susceptible-infected-susceptible (SIS) epidemic models which serve as ground truth identifiers of nodes spreading efficiency. Experimentally, we show that by exploring only the 20% of the network and using the degree centrality as well as the k-core measure, we are able to identify the influential spreaders with at least the same accuracy as in the full information case, namely, the case where we have access to the original graph and in that graph, we compute the centrality measures. Finally and more importantly, we present strong evidence that the degree centrality - the degree of nodes in the collected samples - is almost as accurate as the k-core values obtained from the original graph. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Network Science Springer Journals

A graph exploration method for identifying influential spreaders in complex networks

Loading next page...
 
/lp/springer_journal/a-graph-exploration-method-for-identifying-influential-spreaders-in-T4AMQzbtg0
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Physics; Applications of Graph Theory and Complex Networks; Complexity; Simulation and Modeling
eISSN
2364-8228
D.O.I.
10.1007/s41109-017-0047-y
Publisher site
See Article on Publisher Site

Abstract

The problem of identifying the influential spreaders - the important nodes - in a real world network is of high importance due to its theoretical interest as well as its practical applications, such as the acceleration of information diffusion, the control of the spread of a disease and the improvement of the resilience of networks to external attacks. In this paper, we propose a graph exploration sampling method that accurately identifies the influential spreaders in a complex network, without any prior knowledge of the original graph, apart from the collected samples/subgraphs. The method explores the graph, following a deterministic selection rule and outputs a graph sample - the set of edges that have been crossed. The proposed method is based on a version of Rank Degree graph sampling algorithm. We conduct extensive experiments in eight real world networks by simulating the susceptible-infected-recovered (SIR) and susceptible-infected-susceptible (SIS) epidemic models which serve as ground truth identifiers of nodes spreading efficiency. Experimentally, we show that by exploring only the 20% of the network and using the degree centrality as well as the k-core measure, we are able to identify the influential spreaders with at least the same accuracy as in the full information case, namely, the case where we have access to the original graph and in that graph, we compute the centrality measures. Finally and more importantly, we present strong evidence that the degree centrality - the degree of nodes in the collected samples - is almost as accurate as the k-core values obtained from the original graph.

Journal

Applied Network ScienceSpringer Journals

Published: Aug 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off