A Grapevine-Inducible Gene Vv-α-gal/SIP Confers Salt and Desiccation Tolerance in Escherichia coli and Tobacco at Germinative Stage

A Grapevine-Inducible Gene Vv-α-gal/SIP Confers Salt and Desiccation Tolerance in Escherichia... Grapevine is an important fruit crop cultivated worldwide. Previously, we have reported the characterization of a salt stress-inducible gene Vv-α-gal/SIP isolated from the tolerant grapevine cultivar Razegui. In this study, we performed functional studies in both Escherichia coli and tobacco systems to gain more insights in the role of the Vv-α-gal/SIP gene. Our data revealed that the recombinant E. coli cells harboring the pET24b+ expression vector with the Vv-α-gal/SIP showed higher tolerance to desiccation and salinity compared to E. coli cells harboring the vector alone. In addition, the transgenic tobacco plants expressing the Vv-α-gal/SIP gene exhibited a higher percentage of seed germination and better growth under salt stress than the wild-type (WT) tobacco seedlings. This stress mitigation might be related to the putative function of this gene, which is thought to be involved in carbohydrate metabolism regulation. Collectively, these results suggest that Vv-α-gal/SIP is potentially a candidate gene for engineering drought and salt tolerance in cultivated plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical Genetics Springer Journals

A Grapevine-Inducible Gene Vv-α-gal/SIP Confers Salt and Desiccation Tolerance in Escherichia coli and Tobacco at Germinative Stage

Loading next page...
 
/lp/springer_journal/a-grapevine-inducible-gene-vv-gal-sip-confers-salt-and-desiccation-kHhJ1Wwig4
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Human Genetics; Biochemistry, general; Zoology; Medical Microbiology
ISSN
0006-2928
eISSN
1573-4927
D.O.I.
10.1007/s10528-017-9831-8
Publisher site
See Article on Publisher Site

Abstract

Grapevine is an important fruit crop cultivated worldwide. Previously, we have reported the characterization of a salt stress-inducible gene Vv-α-gal/SIP isolated from the tolerant grapevine cultivar Razegui. In this study, we performed functional studies in both Escherichia coli and tobacco systems to gain more insights in the role of the Vv-α-gal/SIP gene. Our data revealed that the recombinant E. coli cells harboring the pET24b+ expression vector with the Vv-α-gal/SIP showed higher tolerance to desiccation and salinity compared to E. coli cells harboring the vector alone. In addition, the transgenic tobacco plants expressing the Vv-α-gal/SIP gene exhibited a higher percentage of seed germination and better growth under salt stress than the wild-type (WT) tobacco seedlings. This stress mitigation might be related to the putative function of this gene, which is thought to be involved in carbohydrate metabolism regulation. Collectively, these results suggest that Vv-α-gal/SIP is potentially a candidate gene for engineering drought and salt tolerance in cultivated plants.

Journal

Biochemical GeneticsSpringer Journals

Published: Nov 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off