Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Grapevine-Inducible Gene Vv-α-gal/SIP Confers Salt and Desiccation Tolerance in Escherichia coli and Tobacco at Germinative Stage

A Grapevine-Inducible Gene Vv-α-gal/SIP Confers Salt and Desiccation Tolerance in Escherichia... Grapevine is an important fruit crop cultivated worldwide. Previously, we have reported the characterization of a salt stress-inducible gene Vv-α-gal/SIP isolated from the tolerant grapevine cultivar Razegui. In this study, we performed functional studies in both Escherichia coli and tobacco systems to gain more insights in the role of the Vv-α-gal/SIP gene. Our data revealed that the recombinant E. coli cells harboring the pET24b+ expression vector with the Vv-α-gal/SIP showed higher tolerance to desiccation and salinity compared to E. coli cells harboring the vector alone. In addition, the transgenic tobacco plants expressing the Vv-α-gal/SIP gene exhibited a higher percentage of seed germination and better growth under salt stress than the wild-type (WT) tobacco seedlings. This stress mitigation might be related to the putative function of this gene, which is thought to be involved in carbohydrate metabolism regulation. Collectively, these results suggest that Vv-α-gal/SIP is potentially a candidate gene for engineering drought and salt tolerance in cultivated plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical Genetics Springer Journals

A Grapevine-Inducible Gene Vv-α-gal/SIP Confers Salt and Desiccation Tolerance in Escherichia coli and Tobacco at Germinative Stage

Loading next page...
 
/lp/springer_journal/a-grapevine-inducible-gene-vv-gal-sip-confers-salt-and-desiccation-kHhJ1Wwig4

References (46)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Human Genetics; Biochemistry, general; Zoology; Medical Microbiology
ISSN
0006-2928
eISSN
1573-4927
DOI
10.1007/s10528-017-9831-8
pmid
29150723
Publisher site
See Article on Publisher Site

Abstract

Grapevine is an important fruit crop cultivated worldwide. Previously, we have reported the characterization of a salt stress-inducible gene Vv-α-gal/SIP isolated from the tolerant grapevine cultivar Razegui. In this study, we performed functional studies in both Escherichia coli and tobacco systems to gain more insights in the role of the Vv-α-gal/SIP gene. Our data revealed that the recombinant E. coli cells harboring the pET24b+ expression vector with the Vv-α-gal/SIP showed higher tolerance to desiccation and salinity compared to E. coli cells harboring the vector alone. In addition, the transgenic tobacco plants expressing the Vv-α-gal/SIP gene exhibited a higher percentage of seed germination and better growth under salt stress than the wild-type (WT) tobacco seedlings. This stress mitigation might be related to the putative function of this gene, which is thought to be involved in carbohydrate metabolism regulation. Collectively, these results suggest that Vv-α-gal/SIP is potentially a candidate gene for engineering drought and salt tolerance in cultivated plants.

Journal

Biochemical GeneticsSpringer Journals

Published: Nov 17, 2017

There are no references for this article.