A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L-cysteine

A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of... This paper reports on an electrochemical sensing system for L-cysteine. It is based on the use of hollow cubic Cu2O particles that were prepared in two steps. First, the Cu2O/ polystyrene (PS) composites were prepared by a surface ion exchange strategy for in-situ reductive deposition on the surface of carboxy-capped PS particles. Thereafter, the PS particles were removed from the Cu2O/PS composites by treatment with tetrahydrofuran (THF). The resulting hollow cubic Cu2O particles were placed in a Nafion matrix on a glassy carbon electrode (GCE) which exhibits high surface area, good site accessibility and excellent electrocatalytic activity for L-cysteine. The cyclic voltammetric response of the modified GCE to L-cysteine is about 2.8-fold stronger than when using a GCE modified with pure Cu2O. The detection limit for L-cysteine is lower by about 1 order of magnitude, and the working voltage is rather low (−0.08 V vs. Ag/AgCl). An excellent electrochemical selectivity for L-cysteine over other amino acids was also achieved. The method was successfully applied to the determination of L-cysteine in pharmaceutical samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L-cysteine

Loading next page...
 
/lp/springer_journal/a-glassy-carbon-electrode-modified-with-hollow-cubic-cuprous-oxide-for-qI9W5pIqbN
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria, part of Springer Nature
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2578-4
Publisher site
See Article on Publisher Site

Abstract

This paper reports on an electrochemical sensing system for L-cysteine. It is based on the use of hollow cubic Cu2O particles that were prepared in two steps. First, the Cu2O/ polystyrene (PS) composites were prepared by a surface ion exchange strategy for in-situ reductive deposition on the surface of carboxy-capped PS particles. Thereafter, the PS particles were removed from the Cu2O/PS composites by treatment with tetrahydrofuran (THF). The resulting hollow cubic Cu2O particles were placed in a Nafion matrix on a glassy carbon electrode (GCE) which exhibits high surface area, good site accessibility and excellent electrocatalytic activity for L-cysteine. The cyclic voltammetric response of the modified GCE to L-cysteine is about 2.8-fold stronger than when using a GCE modified with pure Cu2O. The detection limit for L-cysteine is lower by about 1 order of magnitude, and the working voltage is rather low (−0.08 V vs. Ag/AgCl). An excellent electrochemical selectivity for L-cysteine over other amino acids was also achieved. The method was successfully applied to the determination of L-cysteine in pharmaceutical samples.

Journal

Microchimica ActaSpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off