A Generalized Speed–Accuracy Response Model for Dichotomous Items

A Generalized Speed–Accuracy Response Model for Dichotomous Items We propose a generalization of the speed–accuracy response model (SARM) introduced by Maris and van der Maas (Psychometrika 77:615–633, 2012). In these models, the scores that result from a scoring rule that incorporates both the speed and accuracy of item responses are modeled. Our generalization is similar to that of the one-parameter logistic (or Rasch) model to the two-parameter logistic (or Birnbaum) model in item response theory. An expectation–maximization (EM) algorithm for estimating model parameters and standard errors was developed. Furthermore, methods to assess model fit are provided in the form of generalized residuals for item score functions and saddlepoint approximations to the density of the sum score. The presented methods were evaluated in a small simulation study, the results of which indicated good parameter recovery and reasonable type I error rates for the residuals. Finally, the methods were applied to two real data sets. It was found that the two-parameter SARM showed improved fit compared to the one-parameter SARM in both data sets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Psychometrika Springer Journals

A Generalized Speed–Accuracy Response Model for Dichotomous Items

Loading next page...
 
/lp/springer_journal/a-generalized-speed-accuracy-response-model-for-dichotomous-items-FSPs2SbmV5
Publisher
Springer US
Copyright
Copyright © 2017 by The Psychometric Society
Subject
Psychology; Psychometrics; Assessment, Testing and Evaluation; Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law; Statistical Theory and Methods
ISSN
0033-3123
eISSN
1860-0980
D.O.I.
10.1007/s11336-017-9590-9
Publisher site
See Article on Publisher Site

Abstract

We propose a generalization of the speed–accuracy response model (SARM) introduced by Maris and van der Maas (Psychometrika 77:615–633, 2012). In these models, the scores that result from a scoring rule that incorporates both the speed and accuracy of item responses are modeled. Our generalization is similar to that of the one-parameter logistic (or Rasch) model to the two-parameter logistic (or Birnbaum) model in item response theory. An expectation–maximization (EM) algorithm for estimating model parameters and standard errors was developed. Furthermore, methods to assess model fit are provided in the form of generalized residuals for item score functions and saddlepoint approximations to the density of the sum score. The presented methods were evaluated in a small simulation study, the results of which indicated good parameter recovery and reasonable type I error rates for the residuals. Finally, the methods were applied to two real data sets. It was found that the two-parameter SARM showed improved fit compared to the one-parameter SARM in both data sets.

Journal

PsychometrikaSpringer Journals

Published: Nov 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off