A general strategy toward the large-scale synthesis of the noble metal-oxide nanocrystal hybrids with intimate interfacial contact for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants

A general strategy toward the large-scale synthesis of the noble metal-oxide nanocrystal hybrids... The construction of noble metal-oxide nanocrystal hybrids (MOHs) with good interface contact, broadly tunable composition and high yield is critical for their application in the advanced fields. In this paper, a general route was developed for constructing MOHs with intimate interfacial contact based on the coordination of an organic agent with multiple kinds of metal precursors. In the synthesis, critic acid, desirable sources for metal nanoparticles (NPs; for example, Ag+ salts), oxides (for example, Zn2+ salts) and ethylene glycol were dissolved in water. After heating at low temperature to produce the precursor gels and subsequent calcination under air, one kind of the ions (Zn2+) was transformed into an oxide (ZnO) in company with the reduction of another ion (Ag+) to generate metal NPs (Ag). Benefitting from the uniform distribution of Ag and Zn precursor in the gels, the Ag/ZnO composites with good interface contact were finally formed. The Ag/ZnO hybrids can be used as effective catalysts for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants. Under optimized conditions, the Ag/ZnO showed a rate approximately 1.5 times higher than that of Degussa P25 TiO2 for the degradation of rhodamine B. The OH· radicals and ·O2 − play predominant roles in the photocatalytic reaction. The Ag/ZnO can also act as an effective catalyst for the reduction of p-nitrophenol with good reuse performance. The present route is also suitable to construct MOHs with other components (Pt/TiO2, Pt/ZnO, etc.). The route is promising to produce MOHs due to the virtues of the easy synthesis process and high yields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

A general strategy toward the large-scale synthesis of the noble metal-oxide nanocrystal hybrids with intimate interfacial contact for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants

Loading next page...
 
/lp/springer_journal/a-general-strategy-toward-the-large-scale-synthesis-of-the-noble-metal-DHpe0iHJyY
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-017-2910-y
Publisher site
See Article on Publisher Site

Abstract

The construction of noble metal-oxide nanocrystal hybrids (MOHs) with good interface contact, broadly tunable composition and high yield is critical for their application in the advanced fields. In this paper, a general route was developed for constructing MOHs with intimate interfacial contact based on the coordination of an organic agent with multiple kinds of metal precursors. In the synthesis, critic acid, desirable sources for metal nanoparticles (NPs; for example, Ag+ salts), oxides (for example, Zn2+ salts) and ethylene glycol were dissolved in water. After heating at low temperature to produce the precursor gels and subsequent calcination under air, one kind of the ions (Zn2+) was transformed into an oxide (ZnO) in company with the reduction of another ion (Ag+) to generate metal NPs (Ag). Benefitting from the uniform distribution of Ag and Zn precursor in the gels, the Ag/ZnO composites with good interface contact were finally formed. The Ag/ZnO hybrids can be used as effective catalysts for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants. Under optimized conditions, the Ag/ZnO showed a rate approximately 1.5 times higher than that of Degussa P25 TiO2 for the degradation of rhodamine B. The OH· radicals and ·O2 − play predominant roles in the photocatalytic reaction. The Ag/ZnO can also act as an effective catalyst for the reduction of p-nitrophenol with good reuse performance. The present route is also suitable to construct MOHs with other components (Pt/TiO2, Pt/ZnO, etc.). The route is promising to produce MOHs due to the virtues of the easy synthesis process and high yields.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off