Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing

A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing Soft abrasive flow (SAF) processing presents advantages in avoiding surface damages and adapting complex workpiece shapes. However, the current SAF method exhibits low processing efficiency for materials. To solve this problem, a gas-liquid-solid three-phase abrasive flow processing method (GLSP) based on bubble collapsing is proposed. Through a surface constrained module, a multi-inlet constrained flow passage for silicon wafer processing is constructed, in which the bubbles are injected into the abrasive flow to strengthen the processing efficiency. On the basis of the Euler multi-phase model and population balance model (PBM), a GLSP fluid mechanic model is set up. Simulation results show that the bubble collapse region can be controlled by designing the flow passage structure and that the near-wall particle turbulent motion can be strengthened by decreasing the fluid viscosity. The observation and processing experiments show that the most violent bubble collapsing occurs in the initial constrained surface region. Bubble collapsing can result in an average particle velocity increase from 12.90 to 15.97 m/s. The proposed GLSP method can increase the processing efficiency by 50% compared with the SAF method, and the average surface roughness can reach 2.84 nm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing

Loading next page...
1
 
/lp/springer_journal/a-gas-liquid-solid-three-phase-abrasive-flow-processing-method-based-fLnQ0pqya4

References (34)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
DOI
10.1007/s00170-017-1250-9
Publisher site
See Article on Publisher Site

Abstract

Soft abrasive flow (SAF) processing presents advantages in avoiding surface damages and adapting complex workpiece shapes. However, the current SAF method exhibits low processing efficiency for materials. To solve this problem, a gas-liquid-solid three-phase abrasive flow processing method (GLSP) based on bubble collapsing is proposed. Through a surface constrained module, a multi-inlet constrained flow passage for silicon wafer processing is constructed, in which the bubbles are injected into the abrasive flow to strengthen the processing efficiency. On the basis of the Euler multi-phase model and population balance model (PBM), a GLSP fluid mechanic model is set up. Simulation results show that the bubble collapse region can be controlled by designing the flow passage structure and that the near-wall particle turbulent motion can be strengthened by decreasing the fluid viscosity. The observation and processing experiments show that the most violent bubble collapsing occurs in the initial constrained surface region. Bubble collapsing can result in an average particle velocity increase from 12.90 to 15.97 m/s. The proposed GLSP method can increase the processing efficiency by 50% compared with the SAF method, and the average surface roughness can reach 2.84 nm.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 8, 2017

There are no references for this article.