A Game Theoretical Approach for Topology Control in Wireless Ad Hoc Networks with Selfish Nodes

A Game Theoretical Approach for Topology Control in Wireless Ad Hoc Networks with Selfish Nodes In ad hoc networks, a significant amount of energy available to devices is utilized in network management operations. Since devices have limited energy resources, therefore, they drop data packets of other nodes to reduce their energy consumption. This selfish behaviour increases number of retransmissions over the link which increases energy consumption of the source node, introduces time delays, and degrades throughput of the network. Although conventional distributed topology control solutions minimize energy utilization of the nodes by adjustment of transmission power, however, selfish behaviour by devices introduce additional complexity in design which make topology control a challenging task. In this paper, we proposed Energy Efficient Topology Control Algorithm (EETCA) using game theoretical approach, in which, utility of the node depends on selfishness of the neighbors, link traffic rate, and link length. In decision-making step, nodes remove the links with other nodes that have high drop rate under the condition that network remains connected. We show that Nash Equilibrium point of the proposed game results in Pareto optimal network topology. We compare results of EETCA with Optimum (OPT) and Minimum Least Power Path Tree (MLPT) algorithms presented in literature. We carried our simulations under multiple sources scenario which show that EETCA outperforms previous approaches when number of nodes in the network increases. Furthermore, we simulate the performance of Ad-hoc On-demand Distance Vector (AODV) routing protocol under EETCA topology and compare it with MLPT and OPT topologies. The results show that the ad hoc network constructed using proposed solution substantially improves throughput of AODV routing protocol as compared to MLPT and OPT topology control algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

A Game Theoretical Approach for Topology Control in Wireless Ad Hoc Networks with Selfish Nodes

Loading next page...
 
/lp/springer_journal/a-game-theoretical-approach-for-topology-control-in-wireless-ad-hoc-UUSKhvKJMZ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4165-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial