A Fuzzy System for Combining Filter Features Selection Methods

A Fuzzy System for Combining Filter Features Selection Methods Feature selection is considered as one of the most important data pre-processing step in different modelling fields, especially for prediction and classification purposes. Feature selection belongs to the wider class of data mining procedures, as it allows to discover the variables that mostly affect a given phenomenon from an analysis of the available data, by thus increasing the knowledge of the considered process or phenomenon. There are three main categories of feature selection approaches, namely filter, wrappers and embedded methods: this work is focused on the first one and, in particular, on a fuzzy logic-based procedure which combines some traditional filter methods. Filter methods exploit intrinsic properties of the data to select the features before the learning task and, with respect to the other kinds of approaches, require a shorter computational time and adequate for datasets with a large number of instances and features. In order to prove the effectiveness of the proposed approach, several tests have been performed. Different classifiers have been designed and applied for binary classification on different datasets: some widely used public datasets including a lot of instances and features and two datasets coming from the metal industry. The obtained results are presented and discussed in the paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Fuzzy Systems Springer Journals

A Fuzzy System for Combining Filter Features Selection Methods

Loading next page...
 
/lp/springer_journal/a-fuzzy-system-for-combining-filter-features-selection-methods-7LDi6TUfNK
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Operations Research, Management Science
ISSN
1562-2479
eISSN
2199-3211
D.O.I.
10.1007/s40815-016-0208-7
Publisher site
See Article on Publisher Site

Abstract

Feature selection is considered as one of the most important data pre-processing step in different modelling fields, especially for prediction and classification purposes. Feature selection belongs to the wider class of data mining procedures, as it allows to discover the variables that mostly affect a given phenomenon from an analysis of the available data, by thus increasing the knowledge of the considered process or phenomenon. There are three main categories of feature selection approaches, namely filter, wrappers and embedded methods: this work is focused on the first one and, in particular, on a fuzzy logic-based procedure which combines some traditional filter methods. Filter methods exploit intrinsic properties of the data to select the features before the learning task and, with respect to the other kinds of approaches, require a shorter computational time and adequate for datasets with a large number of instances and features. In order to prove the effectiveness of the proposed approach, several tests have been performed. Different classifiers have been designed and applied for binary classification on different datasets: some widely used public datasets including a lot of instances and features and two datasets coming from the metal industry. The obtained results are presented and discussed in the paper.

Journal

International Journal of Fuzzy SystemsSpringer Journals

Published: Jul 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off