A fuzzy set approach to Retinex spray sampling

A fuzzy set approach to Retinex spray sampling The color sensation at a point, for the Human Visual System (HVS), derives not only from the color stimulus at that point, but also from the relative spatial arrangement of the stimuli in the image. Based on this observation, the Retinex algorithm, an early and widely studied model of the HVS, determines the output – for each chromatic channel – by rescaling the input intensity of a pixel w.r.t. a reference white level, computed by sampling the brightest points in the neighborhood of the target pixel. In this work, we argue that several elements, inherent to the above observation, can benefit from a fuzzy formalization. We show that the adoption of the fuzzy formalism allows to better encode the mutual influence of pixels. Overall, the fuzzy formalization can provide a general framework for designing and tuning image enhancement algorithms inspired by the HVS. We demonstrate its use by the construction of a fuzzy version of the point-sampling algorithm Random Spray Retinex (RSR). Using RSR as a guide, we build a more efficient algorithm, based on the fact that each spray (a set of sampled points used in RSR to determine the reference white of a specific target) can be assumed to belong to some degree to all the target pixels of the image, provided that a suitable membership function is defined. The features of this alternative formalization of RSR are discussed here, using synthetic and natural test images. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

A fuzzy set approach to Retinex spray sampling

Loading next page...
 
/lp/springer_journal/a-fuzzy-set-approach-to-retinex-spray-sampling-9yfTltK1TH
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4877-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial